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Research on learning has largely centered around workers repeatedly performing a specific set of tasks. 

However, in service functions like management consulting, jobs are seldom repetitive. Nevertheless, 

expertise is acquired with practice. This paper proposes a model to quantify learning when a consistent 

methodology is applied to a wide variety of projects, and introduces an associated ‘expertise learning rate’. 

The model is illustrated using panel data tracking 56 newly trained process improvement project leaders 

completing 233 projects over five years. Applications where trained personnel must work on nonrepetitive 

jobs or projects are common in services, e.g., insurance claims settlement, cost estimation in construction, 

and tax return preparation in accounting. 
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INTRODUCTION 

 

In industrial process improvement programs at large companies, with possibly hundreds of projects 

underway, no two projects are alike; but they are all carried out by trained project leaders using a uniform 

approach (for example, using Lean Six Sigma methodology). These project leaders become experts from 

repeatedly working with the methodology on a variety of projects, and it is this learning that is quantified 

in this paper. Using panel data, performance is tracked for 56 newly trained Lean Six Sigma project leaders 

completing 233 projects over five years. The data show that project leaders became more proficient with 

experience, exhibiting an expertise learning rate of 86%. The proposed model allows for measuring the 

learning on such jobs. 

Research into learning has a long and influential history. The observation that workers repeatedly 

performing a job tend to complete it faster led to the study of the learning curve phenomenon around the 

beginning of the twentieth century (e.g., Bryan & Harter, 1899; Thurstone, 1919; Graham & Gagne, 1940). 

Over the ensuing period, the subject has received sustained attention. Contemporary applications continue 

to arise in settings such as order-picking in fulfillment centers (Grosse et al., 2013), and online ordering in 

supply chains (Kull et al., 2007). However, while the tasks studied in research have ranged from assembly 

operations to large efforts like ship-building, the focus nevertheless has always been on the learning from 

repeatedly performing the same task. The research is much less extensive for situations where the tasks are 

likely to be different, like management consulting and other service sector jobs. The difficulty has been the 

varying nature of cases that a consultant is likely to encounter. Each case facing the consultant is likely 



 American Journal of Management Vol. 22(1) 2022 47 

different from the preceding case. However, consultants, as they gain expertise, are able to complete jobs 

faster. They learn by repeated application of the methodology, not by repeated practice on the same task. 

How might this learning be quantified? A model is proposed for such learning and a suitable metric is 

introduced which will be called the expertise learning rate. To the authors’ knowledge, there has been little 

or no prior work on this topic.  

The proposed model derives from the following insight. Consider a service application like 

management consulting and a newly trained consultant. The consultant faces a portfolio of different projects 

(cases) each with its own time-to-completion durations. The durations are typically log-normally 

distributed. With experience, by the time the consultant is ready to conduct their fourth project, for example, 

the projected durations are still log-normally distributed, but with a mean that is significantly lower, 

reflecting the fact that they can now complete each project in the population faster. Thus, with experience 

the consultant is able to complete projects faster, resulting in smaller population means. A Wright type 

power law applies to the reduction in the means.  

To summarize, in applications like management consulting, projects are varied, the population of 

project duration is lognormally distributed and the distribution shifts to the left with means decreasing as 

the consultant gains experience. The reduction in means can be quantified and provides a way of assessing 

the learning that takes place. Thus, we focus on the population of tasks and not individual tasks, and show 

that learning is reflected in the decreasing population means.  

The model will be illustrated using a study from process improvement. Many industrial organizations 

place significant importance on process improvement. Employees are often trained in successive cohort 

groups in techniques of process improvement, like ‘Lean Six Sigma’, and are encouraged to select and lead 

process improvement initiatives, often in addition to their normal responsibilities. While the projects may 

vary, they are all nevertheless addressed using the same methodology, the same software tools and 

management and documentation procedures. Project leaders learn from repeatedly utilizing the standard 

process, and it is proposed that learning is seen as a reduction in mean duration, as outlined above.   

Panel data from a large oil and natural gas extraction company will be used to track the performance of 

56 newly trained Lean Six Sigma project leaders as they progress, completing 233 projects over a course 

of five years. Project leaders become more proficient at the Lean Six Sigma methodology with experience.  

The learning rate for these projects is estimated to be about 86%. 

Examples where trained personnel undertake activities not necessarily identical, but falling within a 

domain expertise, occur frequently in the service sector (e.g., para-legal work, hazard remediation service, 

cost-estimation in construction, etc.). The proposed model should be useful to these jobs as a way of 

quantifying the learning that takes place. 

 

LITERATURE REVIEW 

 

As noted earlier, the origins of industrial learning research are in the performance of repeated operator 

tasks. It was soon observed that small groups of workers carrying out a job repeatedly exhibited learning 

much like individuals (e.g., Leavitt, 1951; Guetzkow & Simon, 1955; Baloff, 1967). Indeed, large 

organizations engaged in carrying out a task, like building a certain ship or aircraft repeatedly, are also 

found to exhibit learning. The study of organizational learning, in this sense, has a long history, beginning 

with Wright (1936), Rapping (1965), and Arrow (1971), and the topic has had sustained interest ever since 

(e.g., Argote, 1990; Argote et al., 1990; Argote & Hora, 2017; Yelle, 1979; Thompson, 2012).   

Other streams of research have looked into the persistence and depreciation of learning (Argote, 1990), 

incorporating learning curves in decision support systems (Newman, 1994), in design activities (e.g., Dar-

El, et al., 1995), and project and acquisition cost estimation and planning (e.g., Goldberg & Touw, 2003). 

Research has long been concerned with explaining the learning process. Fioretti (2007) examines how some 

observable organizational characteristics might map into the parameters of the random graph model of 

organizational learning proposed by Huberman (2001), toward the goal of making possible the prediction 

of learning rates. In this direction, it is also important to include the work of Levy (1965), Adler & Clark 
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(1991), and Lapré et al. (2000), who studied ways to uncover the influence of managerial actions on 

learning.  

Learning research also has implications for work design and team management. To that end, research 

has looked into the effects on performance of team diversity (Huckman & Staats, 2011), of work variety 

and specialization (Staats & Gino, 2012), and goal-relatedness (Clark et al., 2018). Researchers have also 

looked into various alternative mathematical forms for the learning curve and under what circumstances 

they might apply (e.g., Baloff, 1971; Carlson, 1973; Plaza et al., 2010; Dar-El et al., 1995). Gross et al. 

(2015) provide a very comprehensive summary of models previously considered in the research literature. 

Thus, all of the prior research pertains to learning on a central task or process. However, mastery of an 

expertise often occurs through practice on varied jobs. Examples abound, especially in service functions, 

as noted. We make a start toward a possible model to capture this type of learning. Clearly, the earlier work 

summarized above provides a road-map for further research in this new direction. 

Specific to process improvement, while to our knowledge there has not been attempts at assessing 

learning predicated on experience, researchers have looked at the mechanism of knowledge acquisition and 

its relationship to project success (Savolainen & Haikonen, 2007; Anand et al., 2010; Mukherjee et al., 

1998). Arumugam et al. (2013) investigated how learning occurs in Six Sigma projects and empirically 

showed that success appears to derive from both technical resources and social practices within the team. 

Easton & Rosenzweig (2012) examined the likelihood of Six Sigma project success as a function of four 

experience variables: individuals, the organization, the team leader, and team familiarity. The authors 

concluded that team leader experience had the strongest relationship with project success. Staats et al. 

(2011) found that Lean techniques do improve project outcomes in an empirical study of software projects 

carried out at an Indian software services firm.  

The work by Lapré et al. (2000) cited earlier was based on data from 62 quality improvement projects 

at Bekaert, a steel-wire manufacturer. The projects, under a Total Quality Management (TQM) program, 

were all focused in support of wire production, a highly repetitive manufacturing process. The setting there 

is very different from our process improvement study, which is that of individual project leaders acquiring 

mastery of Lean Six Sigma skills through different projects of opportunity, no two of them alike.  

 

THE MODEL 

 

Project leaders develop expertise by carrying out tasks, which we will refer to as projects. We refer to 

tasks as projects, for often they are of significant duration and complexity and foster expertise development. 

In the tradition of learning rate research, we model the time required to complete a project as a function of 

experience. Project durations are long-tailed, spanning orders of magnitude, and several studies have 

reported that log-normal distributions fit duration data well (e.g. Little, 2006; Strum et al., 2000; May et al., 

2000; Mohan et al., 2007). In our model, the random variable T0 is the time required by a newly trained 

project leader to complete any of the set of projects available in the firm. We propose that 

𝑇0~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇0, 𝜎2). 

Next, we suggest that with experience 𝜇0 decreases, so that the random variable 𝑇𝑗, the duration of any 

project that a project leader might lead after they have completed (𝑗 − 1) prior projects is 

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑗, 𝜎2) where 𝜇𝑗+1 < 𝜇𝑗 < 𝜇0. In our model, we assume that the variance term 𝜎2 is constant, 

reflecting the spread in project durations inherent to project variety in the firm (or the market), but 𝜇 

decreases with experience. We model 𝜇𝑗 = 𝐴 + 𝑏 ln 𝑗 , 𝑏 < 0.  

Therefore, with Z representing the standard normal:  

 

𝑇𝑗 = 𝑒𝜇𝑗+𝜎𝑍 = 𝑒𝐴+𝑏 ln 𝑗+𝜎𝑍 (1) 

 

And the expected completion time for the jth project can be expressed as shown in equation 2: 
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𝐸[𝑇𝑗] = 𝑒𝐴+𝑏 ln 𝑗+
𝜎2

2 = 𝐶𝑗𝑏  (𝑤𝑖𝑡ℎ 𝐶 𝑠𝑒𝑡 𝑎𝑠 𝑒𝐴+
𝜎2

2 )  (2) 

 

The mean, 𝐸[𝑇𝑗], as shown in equation 2, has the functional form of the Wright learning curve. We 

then define the expertise learning rate as 2𝑏. The use of this model will be illustrated with a study from 

process improvement. 

 

THE PROCESS IMPROVEMENT STUDY 

 

Background 

The authors have experience with providing management consulting on industrial Six Sigma projects. 

In our experience, rarely will a project leader do projects that are substantially similar. Indeed, expertise is 

the ability to tackle a variety of projects, often dictated by company priorities and needs. Nevertheless, 

project leaders learn by doing projects. It is this learning that we seek to understand. One of the authors has 

worked extensively with a large oil and natural gas extraction company. We were able to obtain from this 

company five years of panel data for this study. The data covers activities of 56 newly trained Lean Six 

Sigma project leaders. The data permitted us to tie projects to project leaders, extract project durations, and 

create panel data for each project leader. Other attributes, such as monetary value or scope, which may have 

helped in segmenting projects were not made available to us. 

As mentioned, there is no uniformity in what projects a leader might undertake. In the data, there were 

project leaders who completed as many as six different projects in the five-year interval. Table 1 shows 

summary statistics. We see there were 56 projects that were the first for their project leaders. The mean 

duration for this group was 142.6 days. Next, there were 53 projects that were the second project for their 

project leaders; at this point we define the 'experience level' of the project leaders to be two. The mean 

duration of this group was 119 days. Overall, the mean duration of these groups is decreasing. We apply 

the model presented above to assess the learning exhibited. 

The traditional Six Sigma system consists of project teams improving processes using a structured 

method for problem solving known as the DMAIC framework; Define-Measure-Analyze-Improve-Control 

(Pyzdek & Keller, 2003; Linderman et al., 2006; Schroeder et al., 2008). This DMAIC model was 

subsequently adopted by companies and integrated with Lean methods and has come to be known as the 

Lean Six Sigma method. 

 

TABLE 1 

STATISTICS ON PROJECT DURATIONS BY EXPERIENCE 

 

Project Leader Experience Level Sample Size Mean (days) Standard Deviation (days) 

1 56 142.6 96.4 

2 53 119.0 97.2 

3 47 124.0 95.3 

4 39 140.3 111.2 

5 21 95.1 79.5 

6 17 76.3 81.6 

 

We will refer to the oil and gas extraction company as OGC hereafter. OGC is active in over 150 

countries, employs in excess of 40,000 workers, and has annual sales exceeding $90B. Typical of many 

other companies, OGC chose to adopt the DMAIC framework as the basis for its Lean Six Sigma program, 

modifying and customizing this structure where it deemed necessary.  

At the time of this writing, OGC had a corporate-wide Lean Six Sigma program in place for over 15 

years (known within the company as Lean Sigma or simply LS). It ran numerous operating divisions around 

the world, and the level of commitment and progress towards LS varied within its divisions. Originally, the 
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company rolled-out the LS program for key scientists, engineers, and other production personnel, beginning 

with two-weeks of intensive classroom training. OGC created a hierarchy of training levels typical of 

companies adopting Lean Six Sigma, and used project teams as the primary method for analyzing and 

improving a process. A hierarchical structure was established that consisted of trained “green belts” as 

project team leaders, with mentoring support provided by more extensively trained “black belts” and 

“master black belts”.   

Initially, green belt training and certification consisted of two, 5-day sessions, separated by several 

weeks (although, occasionally, they were held back-to-back). Over time, the company shortened its green 

belt training program to six days, creating two, 3-day classroom sessions, spaced a few weeks apart. At the 

conclusion of the training, attendees were considered green belt trained, but were not officially certified by 

the company until they had led at least two LS project teams through the first four phases of the DMAIC 

process. Specifically, green belt candidates were required to organize and lead at least two projects to the 

control phase within 18 months of training course completion. Furthermore, the projects were expected to 

meet a pre-determined minimum level of accrued financial benefit (AFB). The AFB was used as a 

reasonable estimate of the value created by a Lean Sigma project. These financial benefits could be 

measured in various ways, including revenue increases, savings in operating expenses, as well as soft non-

AFB savings consisting of intangible benefits. Unfortunately, as noted earlier, financial impact information 

such as AFB was not made available to us.  

In addition, a computerized project tracking system was created by the company, and all green belt 

candidates were required to enter relevant project information, beginning with the Define phase and its 

requisite problem statement and input-process-output (IPO) diagram. Since the Control phase was strictly 

an ex post verification period with a fixed length of 12 months, for purposes of this study, we only 

considered the elapsed time between project initiation and the beginning of the control phase (i.e., the time 

to progress through DMAI phases only). For all intents and purposes, projects are essentially finished within 

the DMAI period. Once the project moved into the Control phase, the project leader monitored and entered 

financial benefits into the project tracking system on a regular basis, over the course of 12 months.  

 

Description of the Panel Data 

For each project, we were provided the start and end dates for the various DMAIC phases, allowing us 

to compute the duration defined above (see Table 3). We deleted projects with duration less than 10 days. 

The dataset also listed mini-projects that followed an abbreviated DMAIC process (and thought to last less 

than 10 days), but our intent was to focus on the standard DMAIC projects. We also deleted projects with 

duration greater than 408 days (those flagged as outliers in data cleansing). Projects generally last about a 

year; indeed, teams were encouraged to reach the start of the Control phase in 3 to 6 months. Therefore, 

durations significantly longer than a year were suspect and were potentially caused by delays or mistakes 

in using the project tracking system. This pruning yielded data for 233 projects. These 233 projects were 

performed by 56 project leaders who had been trained on the DMAIC method of process improvement 

through one- or two-week training programs (flagged by a suitable indicator variable in the data). As noted, 

a leader might undertake projects of different sizes. Multiple leaders might work on a given project but the 

start and end dates of their involvement were separately logged. Furthermore, for each project leader, Lean 

Six Sigma training completion dates were provided by OGC. Additional information included details such 

as the facility identifier for each project. A copy of the data set in Excel format may be found on GitHub in 

the following location: https://github.com/venkav3/Expertise_learning_curve/blob/master/PI%20Study. 

xlsx 

In the vast majority of cases, individual project leaders carried out projects of widely varying durations 

(See Figure 1). We were curious to see if project leaders self-selected longer projects as they gained more 

experience. Figure 2 shows box plots of project durations versus experience. There is no evidence that more 

experienced project leaders select longer duration projects. The Pearson correlation between duration and 

experience level was a small negative value of −0.139 (p-value 0.034).  
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TABLE 3 

EXCERPT FROM THE DATA SET 

 

Project 

leader ID 

Training 

type 

Training 

time-stamp 

Project ID Operating unit 

code 

Project 

start 

Project 

end 

Project 

duration 

1009 1 876 11323 2015 779 896 117 

1009 1 876 11938 2015 824 929 105 

1009 1 876 12926 2015 933 1062 129 

1009 1 876 12908 2015 946 1294 384 

1013 1 785 9458 2015 538 594 56 

1013 1 785 10171 2015 664 882 218 

1013 1 785 10170 2015 664 847 183 

1013 1 785 13780 2015 1016 1112 96 

1013 1 785 15674 2015 1184 1225 41 

 

FIGURE 1 

PROJECT DURATIONS BY PROJECT LEADER 

 

 
 

FIGURE 2 

PROJECT DURATIONS BY PROJECT LEADER EXPERIENCE 

 

 
 

A project leader would typically arrange a brain-storming session with their team to select a suitable 

project from a list of candidates. Projects were placed in four categories on the basis of benefit and 

difficulty. Projects judged easiest to complete, but with low payoff, were placed in the "Potential" category. 

Any projects with a predicted high payoff and low difficulty were placed in the "Implement" category. High 

payoff but difficult projects were positioned in the "Challenge" category, and projects with low payoff and 

high difficulty were placed in the "Kill" category. It was not uncommon for teams to start with a list of 

about six candidates, and most teams finished by selecting a project from the implement category. Thus, 

projects selected were almost always projects of opportunity. 
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Analysis 

For ease of analysis, we introduce some terminology. If a project is the first project of its project leader 

we say that the project leader experience level was 1 when this project was carried out. Likewise, we say 

that the project was an experience level 1 project. In general, when a project is the nth project of its project 

leader, we say that the experience level of the project is n and likewise that the experience level of the 

project leader leading the project is n. 

In our model we assumed that the distribution of project durations by experience level is log-normal 

with constant 𝜎. To verify this assumption, we grouped projects by experience level and checked log-

duration for normality (See Figure 3). The data show no departure from normality at 𝑝 = 0.05. 

Furthermore, the sample standard deviations are approximately equal (See Table 2). We carried out Levine's 

Test and found no evidence to reject equality of variance at 𝑝 = 0.05. 

 

FIGURE 3 

NORMALITY TEST FOR LOG-DURATIONS BY EXPERIENCE LEVEL 

 

 
 

TABLE 2 

STATISTICS ON LOG-DURATIONS BY EXPERIENCE LEVEL 

 

Experience Level Sample Size Mean Log Duration  Log Duration Std. Deviation  

1 56 4.703 0.784 

2 53 4.393 0.959 

3 47 4.471 0.923 

4 39 4.611 0.880 

5 21 4.167 0.951 

6 17 3.990 0.819 

 

Expertise Learning Rate 

To assess the expertise learning rate, a Mixed Linear Model was fit to the data. Project leaders were 

considered a random factor; therefore, the data were grouped by project leaders. The groups were modeled 

as having random slopes but constant intercept. Recall that the intercept denotes the mean project duration 

of a newly trained project leader if they were to carry out all of the projects in the organization. Thus, the 

model allows for different learning rates for different project leaders, all starting from a common base 

denoted by the intercept. 
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Individual Learning Rates 

The fixed effect deriving from the random slopes, b, may be interpreted as the mean learning rate of 

the population of project leaders. The results from the model fitting are as follows; 𝑏 = −0.22 (p = 0.03), 

the standard deviation of the random slopes is 0.17, and that of the residuals is 0.87 (an estimate of 𝜎). 

An estimate of the intercept A is 4.68. The variation of the residuals reflects the inherent spread in 

duration of projects, and this is found to account for 97% of the stochastic variation in the data. As noted 

before, project durations span several scales of magnitude. A Likelihood Ratio Test and the KR test also 

confirmed significance of the model at p = 0.03. Residuals appear normally distributed (See Figure 4). 

 

FIGURE 4 

MIXED-EFFECTS MODEL – QQ PLOT OF RESIDUALS 

 

 
 

The data show a mean learning rate of 2−0.22 = 86%. Individual 𝑏𝑖𝑠 vary around 𝑏 = −0.22 with a 

standard deviation of 0.17, resulting in varying individual learning rates. The constant C above is the mean 

of projects for experience level 1. Using the estimates A = 4.68 and 𝜎2 = 0.76 yields 𝐶 = 𝑒𝐴+
𝜎2

2  = 157.6 

days. The observed mean for this group was 142.6 days (See Table 1). 

The decreased population means captures the learning of process improvement expertise. As they 

repeatedly complete projects, engineers become increasingly comfortable with the DMAIC sequence, 

utilizing the requisite statistical software, recording and documentation requirements, working as a team 

and so forth. Thus, a project leader carrying out their fourth project will take only 86% of the time it would 

have taken them had it been their second project. 

 

DISCUSSION 

 

The proposed approach could be used to measure expertise development in any application where 

trained professionals make use of a set methodology to carry out projects that are themselves quite varied. 

To illustrate the managerial significance of such analysis, consider the example of Lean Six Sigma process 

improvement. 

Companies have long recognized the importance of continuous process improvement and have devoted 

significant resources to developing a culture of continuous improvement. The strategic benefits from 

improved operations are well studied (e.g., Bertsch & Williams, 2001; Anand et al., 2009; Shah & Ward, 

2003; Zu et al., 2008). For instance, the United States Army reported that since the introduction of Lean 

Six Sigma in 2006, cumulatively 19.1B dollars have been saved through process improvement (OBT, 

2011). In the 2011 fiscal year, 2,111 projects were under way, representing 3.6 B dollars in financial 

savings, and the Army had trained 5,700 Green Belts, 2,400 Black Belts and 175 Master Black Belts. Given 

the scale of resource and time committed to such endeavors, it becomes incumbent to understand the role 

of learning in skills development, how that might be fostered, and what is lost when trained Lean Six Sigma 

leaders leave the organization. Reporting on a study on Lean Six Sigma project failures in the Wall Street 
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Journal, Chakravorty (2010) cites the departure of experts from projects as one of the main causes of 

failures. 

 

CONCLUSION 

 

We focused on the learning of expertise which occurs through experience on varied assignments. For 

this situation, which is the case in many service functions like domain-specific management consulting, we 

present a model for quantifying the learning that accrues with experience. The model was illustrated with 

a study from process improvement, and showed that the expertise learning rate is appreciable, at around 

86%. This might allow the organization to benchmark the impact, say, from losing a trained project leader 

who has carried out a significant number of process improvement projects. In addition, quantifiable learning 

rates allow the organization to assess the relative effectiveness of process improvement campaigns in 

different sub-units, with implication for training, resource allocation and prioritization. Future work will 

seek to quantify the expertise learning rate in other domain specific service functions such as cost estimation 

in construction, claims settlement in insurance and tax preparation in accounting. 
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