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Enterprise information systems (IS) should align processes in organizations to ease strategies success and
solve problems using different approaches. Modelling is a way to represent processes and supporting
enterprise architecture (EA) which should comply with a set of rules and constraints.

Model-checking becomes a major area of research which used for formal verification of various properties
translated into mathematical logic. In this paper, an approach of model checking on hypergraph
representation based on a finite state machine(FSM) which supports the alignment of business process(BP)
requirements will be presented to check its correctness and the satisfaction of some properties which need
the checking.
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INTRODUCTION

EA is a capability to envision, plan, design, lead, manage, and control enterprises, systems, and/or
processes in current, transitionary, and future states, and defines the relationships between them. It describes
an organization in terms of its strategy, structure, information flows, value streams, as well as its business.
EA enables the business to understand its current composition, utility, costs, and sources of value
generation.

With EA envisioning and developing the programs and projects necessary to support realization of the
organization’s future strategic objectives. It improves the quality and performance of BP and enhances
productivity across the organization by unifying and integrating data linkages, that’s whey during IS
(process) development, we can find such kinds of errors in the implementation step, caused before i.e., here
we pose the question: how can we ensure and solve these various problems before the implementation and
ensure the business requirements ?
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Diverse logical methods and verification approaches are used to confirm the validation m models and
IS processes management, the models can be represented with the semantics and verify it formally with its
debug grammatical errors using formal methods like model checking.

To answer the question posed before, we propose to utilize formal method to prove that the model of
the system that wants to be implemented is verifying some critical requirements, in our case, we will
propose to apply model checking on the model proposed in our previous work (Khawla, 2018) which
support BP, the hypergraph defined with logical expressions and mapped in a core of FSM that formal
model which can be checked easily using applying Linear Temporal Logic (LTL) formulas to make sure
its correctness.

This paper is structured as follows, after the introduction in the first section, we will present different
related and recent works in the same domain, next in the third section presents a background about formal
methods, various objectives of formal verification, model checking and its techniques. After that, basics of
the model used introduced in section four, then the method applied with LTL formulas of the different
properties that supports BP requirements with hypergraph based on FSM will be described in section five,
finally we will conclude our idea and future work in the conclusion section.

RELATED WORKS

The IS and processes are becoming more and more flexible and sometimes instead of recording the
system (Bouafia, 2019) it typically suffices to reconfigure the system on the basis of a process model, at
various stages of the system development, The main aim of model checking is to provide to decision
procedure efficiently for evaluation of several logical formulae (Gottlob, 2004) over finite relations
structures, the hypergraph are the best example of such structure especially because we combine it with
FSM which rich it with more properties that can be verified.

We can use model checking techniques (Emerson, 2008) to verify the specification. In various domains
of computer science, in both hardware and software (Chou, 2012) (Jindal, 2014) sides researches in
(Morimoto, 2008) describe and give a general idea about checking process without mentioning variability
and compliance of using formal verification. However, the overview (Groefsema, 2008) study the offer
goals of formal verification, techniques, and frameworks for process modeling.

Here is a plethora of studies and publications in the field of model checking methods and applications
on various models, it is possible to check a real-life process specification expressed by Petri nets (Gomes,
2005) or semi-form Unified Modeling Language (UML) activity diagrams (Kherbouche, 2019) (Grobelna,
2014).

Several researchers have addressed the problems related to workflow change (Van der, 2001) (Rinderle,
2004) In the first phases of design models, most errors should be spotted to correct it as early as possible
because of the costs during the system life and running (Barry, 1981). Model-checking is one of the most
know detectors in behavioral designs (Biere, 1999), the translation into the language of automated tools
from the rules and state machine mentioned in (Karimi, 2014) called model checkers which offer support
for policy analysis and allow checking if a policy (set) satisfies certain properties.

Application of graphical representation of algorithm is a very conformable method of specification of
dedicated binary controllers. In the case of Petri nets is one of the most adequate methods for the formal
design of such controllers. It gives an easy way for representation of concurrent processes and additionally
there could be applied mathematical algorithms for formal analysis and verification of the designed model.
There are also several algorithms of direct (Tkacz, 2012) or distributed (Wisniewska, 2012) synthesis of
Petri net model into programmable devices (Wisniewski, 2014).

Besides petri nets, a system may also be modelled as FSM a directed graph of nodes and edges (Van
der, 1998) with nodes representing a state system and edges representing a change in state. The authors in
(Grobelna, 2016) propose using formal methods and double model checking on Petri nets to ensure correct
functionality of the designed distributed logic controller, as a case example they propose a smart home
system.
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Preliminaries
Before starting our approach and application of the model checking we should know the different
principals, concepts and methods used, as well as the several formal methods that exist.

Formal Methods

Software engineering provides various tools for the development of software such as, facilitating the
partitioning of software development. Formal methods (Peled, 2019) are based on mathematical and logical
principles and are often accompanied by automatic or human-assisted tools, these ways are utilized to
formally specify the requirements from the system. A partition of formal methods is as follows:

e Modeling: getting an abstract away some details of the real system applying formal ways.
Specification: the first step of the design with the help of such formalism like logic, process
algebra, and automata.

e Testing: checking the executing (or simulating) the code.

e Verification: proving the software correctness with their formal specification.

In recent years, a lot of progress are seen in both, performance of the different techniques and tools in
accepting the use of formal methods by the software and hardware industry and expect further new and
exciting ideas. We use formal methods for:

e Check the conformance of software conforms with the specifications.

e Testing the process quality to produce.

e Products and block of the issues, defects in the application or the product and quality assurance.

e The verification aims us to solve some properties: Connectivity (determine the process
interaction and which are satisfied with nonfunctional requirements); Correctness (the system
satisfy to either safety (“nothing bad” will happen, ever, during the execution of a system)
neither liveness (“something good “will happen, eventually, when the system executed);
Compensation (how many services can process models implement); Compatibility: it should
bridge the gap between BP design and implementation of enterprise IS and satisfy compatibility
between business participants in the collaboration.

Model Checking

Model checking is one of verifying approach which gives system model with a specification of interest
to including ensuring basic correctness of processes, business compliance checking and variability. It looks
like an automated error test or simulation; the manner is useful for detecting any property infringement (i.e;
bugs or errors) (Baier, 2008). This formal method used for the checking finite-state systems, given a system
model and such specification as a set of formal properties, the model checker verifies if the model meets
with the specification or not and ability of generating the counterexample (Debbi, 2018) (see Fig. 1) when
the model falsifies the specification (the major advantage of model checker).

Techniques of Specifying and Modeling Systems. The formal verification of a system needs two inputs:
one is the given system description and the second corresponding properties will be verified.

The First Input: The Systems Modeling
Generally, the IS describes modules of information processing systems, links among components,
design, and analysis principles at the IS level of which the main purpose is to buttress BP (Khawla, 2019).
The representation of systems characteristics as e.g. states, configurations through algebraic methods and
techniques can be transcribed into graph representations (Molnar, 2014) (Molnar, 2012) FSM, Kripke
structures, binary decision diagrams (BDDs), and model extraction from the code will be presented later

respectively:

1. Finite State Machines (FSM): a standard model used in the mathematical foundation (Molnar,
2017). It can be conceived as an abstract machine having finite set of states (see Fig. 2). with
one beginning state only, the change from the current state to another made with transitions
which triggered by some event or condition (Qadir, 2014). Basic FSM Patterns (Khawla, 2018)
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are: Sequence, Exclusive choice, Multiple choice, Multiple merges, cycle. An FSM defined as
a quintuple (X, S, Sy, 8, F), where: X is the input alphabet; S is a finite set of states (non-empty);
The initial state S,; 6 is the state transition function, and the set of final states F, a (possibly
empty) subset of final states.

Kripke Structure: a graph with labeled state transition that can capture the temporal behavior
of reactive systems. We can say that the Kripke structure is just a labeled FSM extended to
incorporate al labeling function, more formally (Debbi, 2018) it is of a set of states, s,
transitions and labels for each states defining property. The structure defined as a 4-tuple

M = (§,5y, R, L) where: S the finite set of states; Sy: initial states; R the transition relation; L
is a labeling function that labels every state with the set of atomic propositions that are true in
that state.

Binary Decision Diagrams (BDDs): a quite old efficient technique to representing state
transition systems, it is as the algorithmic basis for symbolic model checkers (Bryant, 2018).
Model Extraction from Code: the checking of code or the implementation code not the model
through some automated model extraction approach.

The Second Input: Formal Specification
There are three types of formal specification techniques which are:

I.
2.

Language-based techniques: Mathematical technique based on predicate calculus approach.
FSM-based techniques: an extension of programming language to incorporate the
representation of state machine and rules (Yuang, 1988). Techniques like extended FSM, petri
nets, abstract state machines.
Temporal logical techniques: which are statements of ordering of events and their actions.
There are two important subtypes of LTL and Computation tree logic (CTL).
(a) Linear Temporal Logic (LTL): acommon specification formalism for formal method
tools, it is frequently used for specifying properties of reactive and concurrent systems.
It describes the allowed executions using temporal operators represented by the syntax
below:

¢ == true|false|p|=¢|(P V P)(@P A §)(® = )|GP|RP|FP|(@W ) (M

represent fixed properties of the states of the program and the various temporal
operators syntax are: | ] for G (globally); <> for F (future), <> for X (neXt) and U for
U (strong Until). A property holds in a model if it holds on every path (Kwiatkowska,
2018) starting from the initial state, L TL is used mostly for applications in software
verification.

(b) Computation Tree Logic (CTL): an example of branching temporal logic has path
quantifiers such as: A (for all pathsV) and E (there exists 3 a path) named universal
and existential quantification, respectively. It allows branching time and quantifiers,
CTL is used mostly for applications in hardware verification

Basic Concepts of the Model

Various detecting defects at the modeling level propose using formal verification techniques to ensure
the correctness of the model, in our approach we will try to prove the correctness of model proposed in our
previous work (Khawla, 2018) i.e.; check if the mathematical model: hypergraph in a core of an FSM
model satisfying with some important properties or not. Each FSM pattern described by a formula which
can be verified easily later, in addition to that the highway of presentation of entities, activities, or relations
express an easy way to check some important properties. The important basics on the model are:

Definition 1. FSM’s elements are represented in hypergraph by hyperedge h; where h; € Epgy the set

of hyperedges. The elements of h;are:
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Finite set of n states S (vertices): V = {vy, vy ... 1}, Vs €S

e Finite set of m transitions 7 (hyperarcs) be belonging to Ay where E € A, TC Ar =
{hi, hy...hp}

e The variables or attributes as a label of a transition described by variables belong to an
attribute type, Ay = {A1, T5 ... T;}, the set of types by S Vi, U Viprer,, U Ve where a, b,
¢, deN

Definition 2. The different important element of the model divided as below:
e ThesetofverticesV S § into three sub-sets :Vj, Viprer and V5 1€ : initial vertex, intermediate
vertices and finals vertices.
o The set of arcs (directed edges) with two subsets: Ag;j,simple arcs and Ag,nq arcs with
condition.
NB: The relation between arcs:

Acona V Asim = Aand Acong VU Agim = @ ()

This structure represented as nodes embedded into hyperedges and hyperarcs. The hyperarc direction
shown the direction of transition where input and output are vertices (the head and tail of a hyperarc) which
represent states.

Definition 3. Labelled Hypergraph is a generalized hypergraph that can be extended by some functions
and operations: H = (V,E, label) where [V| < oo,E € V XV,|E| < oie,V,E finite, X = {o|0c €
{0,1} #} set of labels, as binary strings.

The set of data values D can be grasped (efficiency of the representation is left out of the investigation)
again as vertices within the hypergraph and it can be interpreted as variables. Over D as the values of sets
of variables, sets of operations (OP) can be defined that can be used to describe constraints and rules within
formulas. Any FSM*s pattern can be represented by hyperedge hi where h; € E;, where E; the set of
hyperedges, E can be divided into sub-sets of E where sub-sets of E present a special pattern:

o Eg.q4: sequence which can use all types of vertices (the tail of the first hyperarc) and use only
simple hyperarcs.

o E,,: parallel split represents a parallel vertex included in the same hyperedge, where various
parallel vertices have the same tail from the main vertex.

e E,.: the exclusive choice pattern represent hyperedge contain all vertices which have the same
tail from the main vertex of different hyperarc, we can designate the conditions with values that
will be assigned to element of conditions (Boolean value: true or false) except null (value).

®  E, ¢ describe pattern multiple choice pattern using only two types of vertices Vi, e and Vr,
the express conditions attributes can be used including null.

e E,... : present the multiple merges, these patterns is more complicated than to others because
of the multiple states merging vertices are included in the same hyperedge it can contain all
type vertices and there is no connection merged vertices.

e E_: the cycle pattern, a simple structure from hyperedge which presented the head E or vertex
V to the tail which can be the same as the head.

We introduced the various important basic parts of the hypergraph model as well as the different
patterns of FSM to facilitate the formal verification using model checking approach, next section explains
it in detail.

Problem Posed and Verification Method of Model Properties

Design of IS becoming more complicated because of design errors which can result from interleaved
access over shared data, process synchronization, specifications dynamic changes and very likely the
misunderstanding and misinterpretation by programmers on business logical specifications, for that
researchers aim to find solutions (approaches and tools) to investigate general verification techniques for
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quality design. Our main goal is to detect the correctness of our model and its satisfying with various
properties.

The paper proposes a formal method for verifying our model which base on hypergraph mapped in
FSM using model checking, we will study and use a one of verification technique. We will define and verify
if some base hypergraph properties satisfy with the model or not? we will apply a verification approach on
the hypergraph model because it can be a good example of such structure to help the decision.

The verification must formalize mathematically the process model and verification criteria which
should be the defined well because the hypergraph model wants to be verified is in the core of FSM
(represented with its semantic), so the model checking is the suitable technique to verify its correctness.

Graphs and hypergraphs are important examples of such structures, our model which is the input based
on some concepts are formulated on the base of Kripke structure which is as we mentioned before that is a
labeled FSM, so main concepts of the model will be verified using Kripke structure are:

Definition 4. Transition System (Kripke structure), with (v,) explicit on hypergraph based of FSM. A
transition system: M = hy, vy, =, L; consists of:

eV finite set of different kind of vertices (V;, Vipter and Vy);

C V the initial vertex (vy);

* — C v X v transitions between vertices (V;), ( Vinser) and (Vy), transition (various edges of the
model) can be labeled with an event (actions cited before) a guard and a set of effects that
represent actions triggering other effects;

e VUV — P labelling function such that Vv; € V,3v,,5; - v, € V x V.

Definition 5. A path 7 in our system M = (V,v, = L;) representing one possible execution of the
system that it models, is a (finite or infinite) sequence of vertices and transitions T = vy ag vV 1a4 S1 -+
where v; € V, A; € A(s;) and 6 (v, A;))(v; +1) > Oforalli€N.

Such program given as code hardware description language correspond to an FSM 1i.e; a directed graph
consisting of nodes (or vertices) and edges. nodes are system states and edges describe transitions, while
the propositions give a property at execution point. Errors in such systems or process can have
consequences, hence the urgent need to be able to ensure and guarantee their correctness, Unfortunately,
Once the model is complete, properties can be required, and verified. applying to check have focused on
finite-state models and either CTL or LTL it is necessary to specify properties on the finite-state abstracted
models and this will be our second step:

Formally, the problem can be stated as follows: given a desired property, expressed as a temporal logic
formula ¢, and a structure M with initial vertex v0O decide if M | = ¢.

The concept LTL model checking seeks to answer the question (with starting state omitted): Does
M|=¢ hold? or, equivalently: DoesVm € Paths(M).m|= 0 ¢ hold? where(recall) | =
i ¢ means path at position i satisfies formula ¢. In this part of the paper, we will give some general
properties which can be verified in our model expressed in LTL formulas introduce some general idea of
the model or special property of part of the model (pattern) to be sure about its correctness. Propositional
variables should be known before to express the set of atomic propositions e.g.: i, f, m. The syntax of the
atomic descriptions of a system in LTL expressed by using properties of LTL.

e Property 1: starting vertex i must respond to final vertex f. LTL expressed with: G(S = Ff)
this property generally express that every process starts with the initial state or initial vertex
(v;) must respond to one a final states or final vertex (v), the G express for always (globally)
and the F for eventually (in the future). This formula ensures that if a process start so it should
finish, i.e; the system is working.

e Property 2: When initial action occurs, it will eventually be final action. When intermediate
action occurs, it will eventually be in final action LTL expressed with : G(i = Ff) that means
globally when the process start from the first vertex it will be at final action (one of the final
actions)in the future, i.e.; this property generally express that every process starts with the
initial state or initial vertex (v;) must respond to one of the final states or final vertex (v ), the

Journal of Applied Business and Economics Vol. 22(9) 2020 255



G express G for always (globally) and the F for eventually (in the future). This formula ensure
that if a process start so it should finish, i.e.; the system is working

e Property 3: initial vertex precedes intermediate vertices (if exists) after one of the final
vertices. LTL expressed with: [-q U (g A [-p U s])], this property express that globally the
the state expressed by q (v, final state) could not happened only until the state p Viper
intermediate state (if it exists in the process) happened and this state too can happened if only
the initial state start the process (v;), this property can express the respecting of the order in the
model to guaranty the good sequence of different actions.

e Property 4: S exists between Q and R. LTL expressed with : G(Q A =R = (=RW (S A
=R))), this property generally express that every intermediate state R in LTL expression
should be happened between initial expressed with @ state or initial vertex (v;) and one of the
final states R or final vertices (v5) the G express G for always (globally) and the W for weak
until. This formula ensure the order of the vertices or sates in the model should be respected
L.e.; an intermediate (Viner) state should be between the initial state (v;) and final one(v f). So,
the system is working in respected order.

e Property S: Checks that the model is non-trivial. LTL expressed is: EX true, this property
generally express that at least one state success, G for always (globally) and the F for eventually
(in the future). This formula ensure that the model is significant.

Generally, two types of properties can be expressed using temporal logic: Safety and Liveness. safety
property state that something bad never happens, a simple example of that is the LTL formula G— error
that means that error never occurs.

Liveness properties state that something good eventually happens, a simple example of that can be
expressed better is the CTL formula (VGreq — VFgrant) that means that every request is eventually
granted.

CONCLUSION

In this paper, we have presented the formal verification technique which verifies the process model at
the design phase of the IS model, these techniques can detect and correct errors of the models as early as
possible and in any case before implementation because as we know the correctness of the software models
has to be ensured in order to get correct software.

Model-checking verification promises to have an even greater impact on the hardware and software
industries, as future work will investigate verification and strategy synthesis techniques for our model where
a simulation of this formal verification will be proved soon.
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APPENDIX

FIGURE 1
PRINCIPAL OF MODEL CHECKING
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