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Investments with high Sharpe ratios tend to be fixed income investments, particularly short-term bonds. 

Such securities dominate income investment, but not growth investment. We generalize the Sharpe ratio to 

interpolate smoothly between risk-averse and risk-seeking behaviors, with the traditional Sharpe ratio as 

a special case. The generalized ratios may be used to optimize portfolios within a lifestyle strategy or a 

lifecycle strategy. We demonstrate that the Sharpe ratio has an interpretation connected to value at risk 

(VaR), if returns are normally distributed. We study broad market indices and indicators for US stocks, US 

corporate bonds, gold, and Japanese stocks. Using monthly data obtained from FRED, we show that these 

datasets are neither normal, nor log-normal, nor stable. We argue that none of these distributions is 

appropriate for market data. We argue instead for using infinitely divisible distributions, and fit Pearson 

distributions to the data. 
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THE SHARPE RATIO AND ITS GENERALIZATION 

 

The Sharpe ratio (Sharpe, 1970) is one of several attempts to quantify the tradeoff between return and 

risk. It equates risk with variability of return, defined by the standard deviation. It postulates a constant 

price for return, in the sense that for securities with the same Sharpe ratio, each percentage point increase 

in return is paid for by a constant percentage point increase in variability. 

Issues are confused further by the postulation that a risk-free asset has zero standard deviation over a 

single period, when in fact such assets, like short-term US Treasury bills, are indeed subject to fluctuating 

returns over extended periods of time. Of course the Sharpe ratio concerns not absolute returns, but rather 

excess returns above the risk-free return. We could argue that the standard deviation of a set of zero excess 

returns is itself zero. However, the mean of that set would also be zero, but classic mean-variance analysis 

does not declare the mean return of the risk-free asset to be zero axiomatically. 

In this paper, we are concerned most with the assumption of a constant price for return. We shall 

calculate Sharpe ratios for broad asset classes without taking account of the risk-free return (equivalently, 

setting the risk-free return to zero). We justify this by noting that the results, which heavily favor the most 

conservative asset classes (those with lowest mean return), would be even further exaggerated by 

subtracting out the risk-free rate. 

Our data source was FRED, the research arm of the St. Louis Federal Reserve Bank (see FRED time 

series). We took monthly average prices from January 1973 through June 2021, calculating relative 
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changes, for the following series: the Wilshire 5000 total market full cap US stock index; the gold fixing 

price in London; the ICE BofA US corporate bond total return index; and the Nikkei 225 stock index. For 

comparison, we included one-twelfth the yield on the US 1-year Treasury note. Based on this, we calculated 

the monthly Sharpe ratios in table 1, listed in decreasing order. Annualized Sharpe ratios are computed by 

multiplying monthly Sharpe ratios by √12. 

 

TABLE 1 

SHARPE RATIOS OF BROAD ASSET CLASSES 

 

 mean standard deviation 
monthly 

Sharpe ratio 

annualized 

Sharpe ratio 

Treasury 1-year note 0.0042 0.0108 0.3842 1.3310 

US Corporate Bond 0.0063 0.0182 0.3453 1.1962 

Wilshire 5000 Stock 0.0095 0.0402 0.2370 0.8209 

Gold 0.0070 0.0502 0.1389 0.4812 

Nikkei 225 0.0040 0.0461 0.0868 0.3007 

 

For completeness, we provide the correlations between monthly returns in table 2. 

 

TABLE 2 

CORRELATIONS BETWEEN BROAD ASSET CLASSES 

 

 Treasury 

1-year note 
US Corp Bond Wilshire 5000 Stock Gold Nikkei 225 

Treasury 

1-year note 
1.0000 0.0323 -0.0276 -0.0286 -0.0096 

US Corp Bond 0.0323 1.0000 0.2759 -0.0208 0.0882 

Wilshire 5000 Stock -0.0276 0.2759 1.0000 -0.0239 0.5150 

Gold -0.0286 -0.0208 -0.0239 1.0000 -0.0444 

Nikkei 225 -0.0096 0.0882 0.5150 -0.0444 1.0000 

 

We note for the record that only gold has negative correlations with each of the other four asset classes; 

1-year Treasury notes have negative correlations with three of the other asset classes. 

Based on Sharpe ratios alone, the prudent investor would be advised to focus mainly on fixed-income 

securities. A portfolio combining these assets should be able to increase the overall Sharpe ratio, but it 

would rely the most on fixed-income securities, together with gold. 

We seek a way to incorporate information about mean return and standard deviation that also accounts 

for different risk tolerance profiles. Let 𝜇 be the mean return on a security, and let 𝜎 be the standard 

deviation of returns. An investor who is indifferent to risk will seek to maximize 𝜇, no matter the value of 

𝜎. A cautious investor, for whom the price of return is constant, will seek to maximize the quotient 𝜇 𝜎⁄ , 

which is the Sharpe ratio. 

To interpolate smoothly between these behaviors, choose a value of 𝜆 between 0 and 1 inclusive; that 

is, 0 ≤ 𝜆 ≤ 1. Then the generalized Sharpe ratio with exponent 𝜆 is defined as 𝜇 𝜎𝜆⁄ . When 𝜆 = 0, the ratio 

reduces to 𝜇, the mean return itself. At the opposite extreme, when 𝜆 = 1, the ratio is the traditional Sharpe 

ratio. Note that because returns are dimensionless in currency units, the generalized Sharpe ratio is also 

dimensionless in currency units for every value of 𝜆 in [0,1]. 
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Using the values of the mean and standard deviation of returns of the five asset classes in table 1, it is 

easy to derive a graph of the monthly generalized Sharpe ratios for all exponents simultaneously. 

Annualized generalized Sharpe ratios are obtained by multiplying the monthly figures by 121−𝜆 2⁄ . These 

exponential functions of 𝜆 have linear graphs when the ratios are graphed on a logarithmic scale, since 

ln(𝜇 𝜎𝜆⁄ ) = ln(𝜇) − 𝜆ln⁡(𝜎). See figure 1. 

 

FIGURE 1 

GENERALIZED SHARPE RATIOS BY ASSET CLASS 

 

 
 

For comparison, we also investigated the 3-year mean return and standard deviation of the 500 largest 

ETFs, with data from the Fidelity Investments website (see Fidelity). For the values 𝜆 = 0, 0.5, 1, we 

enumerated the 10 ETFs among these 500 with the largest generalized Sharpe ratios. For both 𝜆 = 0, 0.5, 

the top 10 performers were technology sector equity funds. For 𝜆 = 1, the top 10 performers were fixed-

income funds focusing on T-bills, short-term T-notes, and TIPS. 

The investor aiming for moderate growth, or growth with income, might seek to maximize the 

generalized Sharpe ratio with an intermediate value of 𝜆. The values for the five asset classes are given in 

table 3, ordered from largest to smallest, for 𝜆 = 0.5. 

 

TABLE 3 

THE GENERALIZED SHARPE RATIO FOR 𝝀 = 𝟎. 𝟓 

 

 Wilshire 5000 US Corp Bond Treasury 1-year note Gold Nikkei 225 

monthly 0.0475 0.0466 0.0400 0.0311 0.0186 

annual 0.3065 0.3005 0.2580 0.2007 0.1201 

 

A portfolio optimizing the generalized Sharpe ratio for an intermediate value of 𝜆 might well resemble 

a typical balanced portfolio, or a lifestyle moderate growth fund. A lifecycle fund manager might choose 

to vary 𝜆 throughout the customer’s life, rebalancing at regular intervals. If the money is needed in Y years, 

where 0 ≤ 𝑌 ≤ 50, the manager might choose to optimize the portfolio with 𝜆 = 1 − 𝑌 50⁄ . An even better 

choice is 𝜆 = (1 − 𝑌 50⁄ )2, which allows the investment to grow more. Software exists to identify 

portfolios that optimize the traditional Sharpe ratio. The manager of this fund might run the existing 

software using the given values of 𝜇, and merely substituting 𝜎𝜆 for the standard deviation. 

We used Excel Solver to determine portfolios that optimized the generalized Sharpe ratio for 𝜆 =
0, 1 4⁄ , 1 3⁄ , 3 8⁄ , 2 5⁄ , 1 2⁄ , 2 3⁄ , 3 4⁄ , 1. The permitted investments were the Wilshire 5000 index, the 
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US corporate bond index, gold, and the Nikkei 225 index. Allocations were fixed from January 1973 to 

June 2021, in an effort to create a “set it and forget it” portfolio. The recommended allocations appear in 

table 4 and in figure 2. 

TABLE 4 

ALLOCATIONS TO OPTIMIZE GENERALIZED SHARPE RATIO 

 

𝜆 Nikkei 225 Gold US corporate bond Wilshire 5000 𝜇 𝜎 

0.0000 0.0000 0.0000 0.0000 1.0000 0.0095 0.0402 

0.2500 0.0000 0.0000 0.0000 1.0000 0.0095 0.0402 

0.3333 0.0000 0.1489 0.0000 0.8511 0.0092 0.0348 

0.3750 0.0000 0.1423 0.4580 0.3997 0.0077 0.0211 

0.4000 0.0000 0.1392 0.5039 0.3569 0.0076 0.0201 

0.5000 0.0000 0.1330 0.5941 0.2729 0.0073 0.0185 

0.6667 0.0000 0.1288 0.6573 0.2140 0.0071 0.0176 

0.7500 0.0000 0.1275 0.6756 0.1969 0.0070 0.0174 

1.0000 0.0000 0.1252 0.7099 0.1649 0.0069 0.0171 

 

FIGURE 2 

OPTIMAL PORTFOLIO ALLOCATIONS 

 

 
 

Figure 3 depicts the performance of each of the four asset classes starting in January 1973 at 100, 

together with the portfolio that optimizes the Sharpe ratio (𝜆 = 1), the portfolio that optimizes the 

generalized Sharpe ratio with 𝜆 = 0.5, and two further economic indicators for comparison: the Consumer 

Price Index, and disposable personal income per capita. 
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FIGURE 3 

PERFORMANCE OF ASSET CLASSES, PORTFOLIOS, AND ECONOMIC INDICATORS 

 

 
 

Figure 4 shows mean return vs. standard deviation for all of the optimal portfolios. As 𝜆 takes on all 

values in [0,1], these points trace out a curve, although, unlike the Markowitz efficient frontier, there is no 

reason to believe this curve is hyperbolic in general. We tentatively identify optimal portfolios for varied 

values of 𝜆 with investment strategies as follows: 1/4, aggressive growth; 1/3, growth; 2/5, moderate growth 

or growth with income; 1, income. We note that the 𝜆 = 2 5⁄  optimal portfolio has very little more 

variability than the Sharpe ratio optimal portfolio, but it shows increased return. Similarly, the 𝜆 = 1 3⁄  

optimal portfolio has very little less return than the highest performing asset (Wilshire 5000), but it shows 

decreased variability. 

 

FIGURE 4 

MEAN VS. STANDARD DEVIATION FOR PORTFOLIOS OPTIMIZING GENERALIZED 

SHARPE RATIOS 

 

 
 

The terminal value for all portfolios optimized for the generalized Sharpe ratios in June 2021 is shown 

in figure 5, starting with a value of 1 in January 1973. 
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FIGURE 5 

ENDING VALUE OF OPTIMAL PORTFOLIOS 

 

 
 

THE SHARPE RATIO AND VALUE AT RISK (VAR) 

 

The traditional Sharpe ratio has an interesting interpretation connecting it to value at risk (VaR) when 

returns are normally distributed. Let a random variable 𝑥 have mean 𝜇 and standard deviation 𝜎. Define the 

z-score of 𝑥 as follows: 𝑧 = (𝑥 − 𝜇) 𝜎⁄ . If 𝑥 signifies returns, or excess returns, on a security, then the z-

score of zero is (0 − 𝜇) 𝜎⁄ = −𝜇 𝜎⁄ , which is precisely the opposite of the traditional Sharpe ratio. Let us 

call the traditional Sharpe ratio 𝑆𝑅. 

Let 𝐹 be the cumulative distribution function for 𝑥, where 𝑥 signifies returns. For 𝛼 in the interval 

(0,1), we define the 𝛼-VaR for 𝑥 as follows: 𝑉𝑎𝑅𝛼(𝑥) = − inf{𝑥|𝐹(𝑥) > 𝛼} = 𝐹−1(𝛼) when 𝐹 is 

continuous. We deduce that 𝑉𝑎𝑅𝛼(𝑥) = 0 ↔ 𝐹−1(𝛼) = 0 ↔ 𝐹(0) = 𝛼. 

Let Φ be the cumulative distribution function of a standard normal random variable 𝑧. If 𝑥 is normally 

distributed, then 𝐹(𝑥) = Φ(𝑧), so 𝐹(0) = Φ(−𝜇 𝜎⁄ ). Thus if 𝑥 is normally distributed, 𝑉𝑎𝑅𝛼(𝑥) = 0 ↔
Φ(−𝑆𝑅) = 𝛼. More briefly, 𝑉𝑎𝑅Φ(−𝑆𝑅)(𝑥) = 0. 

This intriguing equation could be taken as a definition of the traditional Sharpe ratio. It implies that a 

fundamental metric of interest to investors is the fraction of the time that a security has negative returns, no 

matter what its distribution; perhaps this metric, or its complement, should be added to prospectuses and 

similar documents. This enables distribution-free analysis of security risk. Table 5 enumerates the fraction 

of the time that the major asset classes had negative monthly returns from January 1973 to June 2021. 

 

TABLE 5 

FRACTION OF MONTHLY RETURNS THAT ARE NEGATIVE 

 

1-year 

Treasury note 
US corporate bond Wilshire 5000 Nikkei 225 Gold 

0.0000 0.2940 0.3510 0.4510 0.4880 

 

The ordering of asset classes does not match table 1 completely, and that is because returns are not 

normally distributed. Gold has a higher frequency of negative returns than does the Nikkei average, but its 

Sharpe ratio is larger, due to gold’s far higher kurtosis. 
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DISTRIBUTIONS OF COMMON DATA SETS IN FINANCE 

 

The choice of distributions to model real-world phenomena can have an enormous impact on one’s 

conclusions. Incorrect choices in finance can lead to trillion-dollar economic catastrophes, as the likelihood 

of extreme events is not properly estimated. The financial world has relied on assumptions by one scholar 

after another that are not supported by reason or observation. It is time to correct these mistakes. 

In modeling a random variable by a probability distribution, by far the most important point is to 

determine the theoretical support of the random variable: the maximum open interval in which the variable 

theoretically could take values. Return on an ordinary, non-leveraged security can never be less than 

−100% = −1, and can attain arbitrarily large values. The proper support for such a distribution is the semi-

infinite interval (−1,∞). Therefore, neither the normal distribution nor any other probability distribution 

supported on the full real number line is appropriate to model returns on investment. 

The (shifted) log-normal distribution is not appropriate to model stock returns, which have negative 

skewness. The log-normal distribution has positive skewness and heavy kurtosis. 

Since Mandelbrot (1963), much attention has been focused on stable distributions to model returns on 

investment. This is not justified either by data, by practice, or by theory. Using data from FRED, we 

examined the monthly price of cotton, as Mandelbrot did, from January 1990 to July 2021. Unlike 

Mandelbrot, we did not find a severe departure from normality. Skewness was 0.0915, almost completely 

symmetrical. Kurtosis was 3.1352, not terribly large, and comparable to a Student’s t-distribution with 6 

degrees of freedom. The histogram is shown in figure 6. 

 

FIGURE 6 

HISTOGRAM: RELATIVE MONTHLY COTTON PRICE CHANGES 

 

 
 

Non-normal stable distributions have infinite standard deviations. Finite samples from such 

distributions always have finite standard deviations. This raises the question of how to determine when the 

distribution from which one is sampling has an infinite population standard deviation. 

We examined monthly price changes in the Wilshire 5000 index, and computed standard deviations 

over all rolling 12-month, 36-month, 120-month, and 360-month periods from January 1973 to June 2021. 

Next, we computed the average sample standard deviation for each of the four window lengths. The results 

were quite close: 0.0361 for 12 months, 0.0372 for 36 months, 0.0381 for 120 months, and 0.0379 for 360 

months. The largest of these average standard deviations is only 5.54% more than the smallest. Moreover, 

the standard deviation of the sample standard deviations decreases as the window lengthens, showing that 

the estimates are converging. Figure 7 shows side-by-side boxplots of the natural logarithm of the rolling 

standard deviations for 1-year, 3-year, 10-year, and 30-year periods. Figure 8 shows the rapid convergence 
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of the cumulative standard deviation of the monthly returns, typical only of distributions with finite standard 

deviations. 

 

FIGURE 7 

NATURAL LOGARITHM OF STANDARD DEVIATION OF MONTHLY RETURNS, 

WILSHIRE 5000 INDEX 

 

 
 

FIGURE 8 

CUMULATIVE STANDARD DEVIATION OF MONTHLY RETURNS, WILSHIRE 5000 INDEX 

 

 
 

For further verification, we computed annual price changes in the Wilshire 5000 index, and computed 

standard deviations over rolling 10-year and 30-year periods. The average of such standard deviations was 

0.1358 for 10 years, and 0.1398 for 30 years. Again, these values are quite close to each other and to the 

overall standard deviation of annual price changes, 0.1385. Finally, we observed that these values are close 

to the standard deviation of monthly changes, multiplied by √12, precisely what one would expect if the 

observations were chosen independently from the same distribution with finite standard deviation. 

We do not find the claim of an infinite standard deviation credible for this distribution. Hence, we must 

reject the claim that stock index price changes follow a stable but non-normal distribution. We explained 

earlier why such price changes cannot be normally distributed. Therefore, we conclude that stock index 

price changes do not follow any stable distribution. 
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This conclusion is supported by the research of Xian Ning Yan. Yan studied the leading stock market 

indices of America, Asia, and Europe. Yan used statistical techniques to demonstrate that most of these 

indices have finite standard deviations, but possibly infinite kurtosis. 

This raises the question of why it was ever believed that such return distributions must follow a stable 

distribution. This belief appears to be grounded in Mandelbrot’s 1963 paper on cotton prices, and was 

reinforced decades later in his popular book on the subject (Mandelbrot and Hudson, 2004). In essence, 

Mandelbrot postulated that graphs of prices have a self-similar nature, an invariance as to scale that was the 

key feature of Mandelbrot’s work on fractal analysis and geometry. In other words, with the axis scale 

removed, one could not distinguish between a one-day stock chart divided into minutes, and a one-decade 

stock chart divided into days. That assertion does not appear to be true. Furthermore, Mandelbrot’s 

identification of the heavy tails of financial datasets is not unique to stable distributions; other distributions 

have heavy tails as well. 

Stable distributions are defined below. Stable distributions have been completely classified. With only 

three exceptions, the general stable distribution lacks a probability density function that can be expressed 

in closed form. The infinite standard deviation of non-normal stable distributions makes them unsuitable 

for analysis of many financial markets. Ironically, a remark in Mandelbrot’s paper on cotton prices 

identifies the central property that allows us to discover a broader, more flexible, and more useful family 

of probability distributions: infinite divisibility. 

Let 𝑋 be a random variable. Let 𝑌1, … , 𝑌𝑛 be independent, identically distributed random variables, with 

𝑌𝑖~𝑌. The conceptual definition of stability can be written symbolically as follows: 𝑋 is stable if whenever 

𝑌 = 𝑋, there exist constants 𝑎𝑛 and 𝑏𝑛 such that ∑𝑌𝑖 ~𝑎𝑛 + 𝑏𝑛𝑋. Infinite divisibility is defined as follows: 

𝑋 is infinitely divisible if for every 𝑛, we can find 𝑌 such that ∑𝑌𝑖 ~𝑋. 

Evidently, every stable distribution is infinitely divisible; simply choose 𝑌 to be (𝑋 − 𝑎𝑛 𝑛⁄ ) 𝑏𝑛⁄ . Other 

well-known distributions with finite standard deviations are infinitely divisible as well, including broad 

sub-families of the Pearson family: Student’s t-distributions with any number of degrees of freedom; 

gamma and beta prime distributions with any combination of parameters. Note that some beta prime 

distributions have negative skewness, as we observe for many securities. Since infinitely divisible 

distributions are closed under limits, inverse gamma distributions are infinitely divisible too. Distributions 

with bounded support are not infinitely divisible. If 𝑥 belongs to the support of a continuous, infinitely 

divisible distribution, so does 𝑘𝑥 for all positive 𝑘. Thus, the support of a continuous, infinitely divisible 

distribution can only be (−∞, 0), (0,∞), or (−∞,∞). There is a sense in which the tails of an infinitely 

divisible distribution must be at least as heavy as those of a normal distribution. Steutel and Bose et al are 

two basic references on infinitely divisible distributions. 

Figure 9 is a diagram of the Pearson distribution system, projected onto the skewness-kurtosis plane. 

Types II (symmetric: orange line) and I (yellow) have bounded support: beta distributions. Types III 

(gamma: red line), VI (beta prime: pink), and V (inverse-gamma: blue line) have semi-infinite support. 

Types IV (light turquoise) and VII (Student’s t: turquoise line) have doubly infinite support. Types III, VI, 

V, and VII are infinitely divisible. It is not known whether type IV is infinitely divisible. 
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FIGURE 9 

THE PEARSON DISTRIBUTION SYSTEM 

 

 
 

These observations suggest searching among the Pearson distributions, or perhaps related families like 

the generalized beta distributions, to model financial phenomena. We wish to test whether such distributions 

are good fits for individual securities, which might be expected to be far more variable and heavy-tailed 

than broad market indices. To that end, we study monthly price changes for two stocks: Exxon-Mobil 

(XOM) and Tesla (TSLA). We downloaded monthly price data from Yahoo Finance for the months July 

2010 through August 2021. The price for each month was calculated as the geometric mean of the open, 

high, low, and close for that month. Relative price changes were calculated. For this dataset, 𝑁 = 133. The 

correlation between the two variables was 0.0020, not significantly different from zero. Summary 

information for this dataset appears in table 6. 

 

TABLE 6 

SUMMARY STATISTICS FOR XOM AND TSLA 

 

 XOM TSLA 

minimum -0.2359 -0.2071 

median -0.0002 0.0243 

mean 0.0010 0.0473 

maximum 0.1433 0.5799 

standard deviation 0.0510 0.1350 

skewness -0.6822 1.0420 

kurtosis 3.4017 1.4173 

 

TSLA is far more variable than XOM. We are particularly interested in the contrast in skewness; XOM 

is notably negatively skewed, while TSLA is notably positively skewed. Figure 10 provides the scatterplot 

matrix with histograms along the diagonal. 
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FIGURE 10 

SCATTERPLOT MATRIX PLUS HISTOGRAMS FOR XOM AND TSLA 

 

 
 

Next, we used the R package PearsonDS to find the best fit Pearson distribution for the two stocks’ 

monthly returns. We focused only on Pearson distributions of type VI, the beta prime, on the grounds that 

returns theoretically have semi-infinite support (−1,∞), and that the limiting cases type III (gamma) and 

type V (inverse gamma) form a subset of measure zero. 

To measure the quality of the fit, we constructed QQ-plots, and computed the correlation of observed 

quantiles to predicted quantiles. We also compared the extreme observations with the extremes of the fitted 

data. The QQ-plots are shown in figure 11. 

 

FIGURE 11 

QQ-PLOTS FOR XOM, TSLA AGAINST BEST-FIT PEARSON TYPE VI DISTRIBUTIONS 

 

 
 

The correlations in the QQ-plots are 0.9754 for XOM and 0.9974 for TSLA. The fit for TSLA is 

excellent. The fit for XOM, however, is not good at the lower extremity. The maximum monthly decrease 

predicted by the model is 14.83%. In reality, the maximum monthly decrease was 23.59%, an error of 

8.76% occurring one month in 11 years. Money managers and their clients must determine whether that 

size prediction error represents an acceptable risk, based on their risk tolerance. 
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Our use of Pearson distributions to model financial datasets was based on the knowledge that the 

Pearson distributions with semi-infinite support are known to be infinitely divisible. Two further things 

must be borne in mind. First, the infinitely divisible distributions have not been completely classified 

(although there is an abstract characterization of them). There could be other useful families of infinitely 

divisible distributions. 

Second, observations supersede theory. The theory that financial datasets could be modeled well by 

stable distributions has been seen to be untenable. It may be that the assumption of infinite divisibility will 

need to be sacrificed one day as well. We need to describe what we observe, not what we prefer to see. 
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