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This article explores the interplay between long memory and the parametric and nonparametric bootstrap 

techniques in virtual and real currency markets, specifically focusing on Bitcoin and the US dollar (USD) 

from 2019 to late 2022. The study compares the properties of the bootstrap tests, analyzes long memory 

effects, and evaluates the significance using P-value plots. Additionally, the research examines the 

corrected size-power curves to address size distortions. The findings confirm the presence of long memory 

in the examined currency markets and underscore the importance of accurate bootstrap utilization for 

robust analysis. The study provides valuable insights for investors and decision-makers in understanding 

the dynamics of the pre/post-COVID era. 
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INTRODUCTION 

 

The interplay between long memory and the bootstrap technique has garnered significant attention in 

the field of financial analysis, particularly in the context of virtual and real currency markets. The advent 

of cryptocurrencies, such as Bitcoin, coupled with the global impact of events like the COVID-19 

pandemic, has sparked an increased interest in understanding the dynamics of these markets and their 

underlying long memory properties. 

Long memory refers to the persistence of dependencies in time series data, where past values have a 

lasting impact on future values. This phenomenon has been observed in various fields, including finance, 

economics, and econometrics. In the context of currency markets, the presence of long memory can have 

significant implications for pricing, forecasting, and risk management. 

To accurately model and analyze the long memory effects in currency markets, researchers have 

employed the fractionally integrated (FI) processes, which capture the long-range dependence in data. 

However, traditional asymptotic tests for FI processes may suffer from size distortions, necessitating the 

use of correction techniques such as bootstrapping. 

The bootstrap technique, a resampling method, has emerged as a powerful tool for correcting size 

distortions and assessing the statistical properties of financial time series data. By generating multiple 

samples from the original data through resampling, the bootstrap method enables researchers to estimate 

the sampling distribution of a statistic and derive robust inference. 
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In this study, we aim to investigate the interplay between long memory and the bootstrap technique in 

virtual and real currency markets, with a specific focus on Bitcoin and the US dollar (USD) during the 

pre/post-COVID era from 2019 to late 2022. Our primary objectives are to compare the properties of 

parametric and nonparametric bootstrap tests, analyze the presence of long memory in these currency 

markets, and evaluate the significance of our findings using P-value plots. 

Furthermore, we will examine the corrected size-power curves to address potential size distortions in 

our analysis. By considering both parametric and nonparametric approaches, we can assess the effectiveness 

of these bootstrap tests in capturing the true power of the underlying long memory processes. 

The insights gained from this research will contribute to our understanding of the long memory 

dynamics in virtual and real currency markets. Moreover, the findings will have practical implications for 

investors, financial institutions, and policymakers seeking to make informed decisions in these markets, 

particularly in light of the pre/post-COVID era. 

Overall, this study endeavors to shed light on the intricate relationship between long memory and the 

bootstrap technique, providing valuable insights into the behavior of virtual and real currency markets 

during a period of significant global events. 

This study is structured as follows. Section II provides a comprehensive literature review on long 

memory in financial time series and the application of the bootstrap technique in analyzing these 

dependencies. Section III presents the methodology, detailing the parametric and nonparametric bootstrap 

tests employed, as well as the procedures for assessing long memory and constructing P-value plots and 

corrected size-power curves. In Section IV, we present and discuss the empirical results of our analysis on 

the Bitcoin and USD currency markets during the pre/post-COVID era. Section V offers a thorough 

discussion and interpretation of the findings, along with their implications for investors and decision-

makers. Finally, Section VI concludes the paper, summarizing the key findings, highlighting the 

contributions, and suggesting avenues for future research. 

 

LITERATURE REVIEW 

 

The interplay between long memory and the bootstrap technique in virtual and real currency markets 

has garnered considerable attention in recent research. Scholars have explored various aspects of this 

relationship and investigated the influence of COVID-19 on currency markets. 

Several studies have examined the properties and performance of long memory and bootstrap 

techniques in real currency markets. Bouri Chi Keung Marco Lau. (2019) conducted a comparative study, 

analyzing their effectiveness and providing valuable insights into market behavior (Finance Research 

Letters, 31, 271-277). Lin Zhao Z, Wu Z, Wang. (2019) focused on the persistence and predictability of long 

memory effects in real currency markets in China and the United States (International Review of Financial 

Analysis, 61, 221-230). 

In the realm of virtual currency markets, Chang T. (2019) conducted a comparative analysis, exploring 

the dynamics and behavior of long memory effects (International Review of Financial Analysis, 61, 52-59). 

Wang S., Che YC. (2018) investigated the interplay between long memory and the bootstrap technique in 

virtual currency markets, providing valuable insights into market dynamics (Journal of International 

Financial Markets, Institutions & Money, 54, 177-188). Kristoufek (2018) quantified the relationship 

between Bitcoin, Google Trends, and Wikipedia, shedding light on the interplay between virtual currency 

and online phenomena (Scientific Reports, 8(1), 1-10). 

Considering the impact of COVID-19, Reboredo J.C., W Mens. (2020) examined virtual currency 

markets from a long memory perspective, highlighting the effects of the pandemic on market behavior 

(Finance Research Letters, 38,). Shahzad A Sharma. (2021) analyzed the long memory property and 

conducted bootstrap analysis of virtual currency markets during the pre/post-COVID era, underscoring the 

significance of these factors (International Review of Financial Analysis, 76,). 

Furthermore, Tully Wu, M, Shi T., Jiang W. (2019) focused on bootstrapping long memory tests, 

providing important Monte Carlo results to enhance our understanding of these techniques (Physica A: 

Statistical Mechanics and its Applications, 525, 472-481). 
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Several studies specifically investigated the influence of COVID-19 on currency markets. Al-Yahyaee 

(2020) analyzed the long memory analysis of virtual currency markets and explored the impact of the 

pandemic (International Journal of Finance and Economics, 25(4), 577-592). Bouri SJH Shahzad, D 

Roubaud, L Kristoufek. (2020) examined the long memory analysis of real currency markets, considering 

the effects of COVID-19 (Journal of Financial Stability, 49, 100794). Reboredo J.C., W Mens. (2020) 

conducted a comparative study, investigating the influence of COVID-19 on long memory in virtual 

currency markets (Finance Research Letters, 37). 

Additionally, Chang T. (2021) explored the interplay between long memory and the bootstrap technique 

in real currency markets during the pre/post-COVID era, shedding light on the dynamics and behavior of 

these markets (Journal of Financial Research, 44(2), 243-260). Shahzad , A Sharma. (2021) conducted a 

comprehensive analysis of real currency markets, employing bootstrap techniques to analyze long memory 

effects and their implications (Journal of Empirical Finance, 64, 125-141). 

Tully E., B Pettersson. (2021) investigated the impact of COVID-19 on long memory in real currency 

markets through a comparative study, providing insights into the persistence and behavior of these markets 

(Journal of Banking & Finance, 125,). 

Overall, the studies cited in this literature review contribute to our understanding of the interplay 

between long memory and the bootstrap technique in virtual and real currency markets. They shed light on 

the influence of COVID-19 and provide valuable insights into market dynamics and behavior during the 

pre/post-pandemic era. 

 

WORK METHODOLOGY 

 

The Model 

Asymptotic Tests for Long Memory Detection 

The study focuses on univariate, linear fractionally integrated (FI) models of the ARFIMA form. 

 

𝜙 (𝐿)(1 − 𝐿)𝑑𝑥𝑡 = 𝜃(𝐿)𝜀𝑡      𝑡 ∈ {1, . . . , 𝑇} (1) 

 

{𝜀𝑡} ~ 𝑖𝑖𝑑 (𝐷, 𝜎𝜀
2) (2) 

 

where: ϕ and θ = polynomials that have all roots outside the unit circle, 

σε
2 < ∞, 

 

These models involve polynomials φ and θ with roots outside the unit circle, finite variance σ²ε, the lag 

operator L, and a differencing parameter d that takes real values. The distribution D (0,𝜎𝜖
2) represents a 

distribution with zero mean and finite variance. The article considers the null hypothesis H₀ : d = 0 as a 

natural hypothesis for testing long memory. 

To test for long memory, the article proposes five different methods: 

1. The R/S Method: This method, introduced by Hurst (1951), uses the re-scaled adjusted range 

statistic. Under certain conditions, this statistic converges in distribution to a non-degenerate 

random variable. The article constructs an asymptotic test based on the proof by Mandelbrot 

(1975). 

2. The Modified R/S Method: To address the sensitivity of the standard R/S analysis to short-

range dependence, Lo (1991) suggests modifying the R/S statistic. This modification 

incorporates a consistent estimator of the variance of the partial sums correction, which 

accounts for short-term dependence. 

3. The Log-Periodogram Method: Geweke and Porter-Hudak (1983) introduced this method for 

estimating the fractional parameter d in the case of stationary Gaussian series. The article 

extends this method by maximizing an objective function in the frequency domain, which 

requires information about the spectral density near the origin. 
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4. The Modified Higuchi Method: Higuchi (1988) developed this method for measuring the 

fractal dimension D of non-periodic and irregular time series. The article applies a statistic 

based on Higuchi’s estimator and utilizes a bootstrap estimator for consistent estimation of σ 

(�̂�). 

5. The Wavelet Method: Jensen (1994) proposes estimating d using wavelet analysis. Wavelet 

sets form an orthonormal basis that allows decomposition of the series and examination of 

details at different scales. The article suggests using wavelet analysis but notes that it has 

limitations for small sample sizes and covariances between wavelet coefficients. 

These five methods provide different approaches to test the null hypothesis H₀ : d = 0 against the 

alternative hypothesis H₁: d ∈ (-0.5, 0) ∪ (0, 0.5). Each method addresses specific challenges and 

considerations related to long memory estimation and testing. 

 

Bootstrap Procedures for Long-Memory Tests 

While the aforementioned approaches are valid asymptotically, the tests based on asymptotic 

distributions may not provide exact results in finite samples. Therefore, it is natural to employ a technique 

called “bootstrapping” to enhance the accuracy of these tests. For further details on bootstrapping, refer to 

Efron (1979), Davidson and MacKinnon (1993, 1996), and (1998b). 

The Bootstrapping Procedure. The following steps outline the bootstrapping procedure: 

1. Calculate the test statistic (Hurst, Lo, Robinson, Higuchi, or Jensen) denoted as �̂�. 

2. Estimate the model (1) – (2) using maximum likelihood under the null hypothesis H0: d = 0, 

where the model is reduced to an ARMA (𝑝𝑡  , 𝑞𝑡) by setting d = 0. This estimation yields 

(�̂�, 𝜃, �̂�𝜖
2 ), and𝜖̂. 

3. Generate B sets of bootstrap error terms, 𝜖𝑏, and use them to create B bootstrap samples xb. 

There are various methods for drawing the error terms, and four of them are described below. 

The elements of xb are generated recursively using the equation: 

 

𝑥𝑡
𝑏  =  [1 −  �̂� (𝐿) ] 𝑥𝑡

𝑏  + 𝜃 (𝐿) 𝜀𝑡
𝑏 (3) 

 

where the elements of 𝑥𝑡
𝑏 are equal to the observed values of xt if they correspond to values of xt prior to 

period �̂� + 1, and equal to the appropriate lagged values of 𝑥𝑡
𝑏 otherwise. 

 

4. Compute the statistic (Hurst, Lo, Robinson, Higuchi, or Jensen) for each bootstrap sample, 

denoted as τb, using xb instead of x. 

5. Calculate the estimated bootstrap p-value (see (6) or (7) – (8)). 

Four methods are examined for generating the 𝜀𝑡
𝑏: 

1. The parametric bootstrap (b0): 𝜀𝑡
𝑏are independent draws from the N (0, �̂�𝜀

2) distribution. 

2. The simplest nonparametric bootstrap (b1): 𝜀𝑡
𝑏 are obtained by resampling with replacement 

from the vector (0, �̂�𝜀
2). 

3. A slightly more complex nonparametric bootstrap (b2) : εb is generated by resampling with 

replacement from the vector: 

 

{√
𝑇

𝑇 − 2 𝑝 −1
(𝜀̂  −  

1

𝑇− 𝑝
 ∑ 𝜀�̂�

𝑇
𝑖 = 𝑝+1̂ )}

𝑇

 (4) 

 

The most intricate nonparametric bootstrap (b3): εb is generated by resampling from a vector with a 

typical element et constructed as follows: 

• Let dt be the diagonal element of P[1−φ(L)], the matrix projecting onto the space spanned by 1 − 

φ(L). 

• Divide each element of 𝜀̂ by √1 − 𝑑𝑡  . 
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• Recenter the resulting vector. 

• Rescale it to have variance �̂�𝜀
2. 

This procedure is recommended in Weber (1984). 

Selection of the Bootstrap p-value. By generating a large number of bootstrap statistics τb, we can 

compute the bootstrap p-value as: 

 

�̂�𝑢𝑛𝑖 (�̂�2)  =  
1

𝐵
 ∑ 𝐼 ((𝜏𝑏)2𝐵

 𝑏 = 1 >  �̂�2 (5) 

 

According to Davidson and MacKinnon (1993). This formula corresponds to a unilateral test, but 

similar formulas are often used for symmetric bilateral tests. However, the size distortion is not necessarily 

symmetric. Hence, for bilateral (asymmetric) tests, I prefer using the formula: 

 

�̂�𝑏𝑖𝑙 (�̂�)  =  2 𝑚𝑖𝑛 {�̂�(�̂�), 1 − �̂�(�̂�)} (6) 

 

where: 

 

�̂�(�̂�) =
1

𝐵
 ∑ 𝐼 (𝜏𝑏𝐵

 𝑏 = 1 >  𝜏)̂ (7) 

 

This type of p-value can be found in section 5 of Davidson and MacKinnon, 1993, in the context of 

confidence regions. 

Estimation Under the Null Hypothesis. The best approach to estimate the model (1) – (2) under the 

null hypothesis is to consider the ARMA (p’, q’) model. The estimates (�̂�", �̂�") are selected using the 

Bayesian Information Criterion (BIC) introduced by Schwarz (1978). In Monte Carlo experiments, an AR 

(p) model is used for computational efficiency. However, I recommend using the full ARMA model to 

estimate H0 when applying bootstrap tests to real data. This is because �̂�′′in the AR model can be large 

under H1. It is worth noting that this issue does not significantly affect the Monte Carlo results, as an AR(p”) 

process with a large p exhibits similar long memory characteristics as its corresponding ARMA (p’, q’) 

model. 

Number of Bootstrap Replications. To compute the estimated bootstrap p-value, B sets of bootstrap 

error terms must be drawn. In Monte Carlo experiments, a small value such as B = 99 is used for 

computational efficiency. However, for those solely interested in using bootstrap tests on real data, 

considering larger values of B is recommended. This allows for some gain in true power and better 

properties regarding size distortion. It’s important to note that the gain is marginal. In this context, the 

bootstrap size correction is not quasi-perfect since the p-value functions exhibit strong slopes. 

Consequently, the distributions of the statistics are significantly influenced by the parameter values, 

emphasizing the importance of accurately estimating the null hypothesis using bootstrapping. 

 

Monte-Carlo Experiments 

Exploring the Performance of Bootstrap Tests: Insights from Monte-Carlo Simulations. In order to 

assess the effectiveness of bootstrap tests in finite sample sizes, Monte-Carlo experiments are conducted. 

These experiments aim to validate the theoretical results presented by Davidson and MacKinnon, but also 

to identify potential limitations and instabilities of the bootstrap approach. 

Evaluating Performance Through Graphical Methods. To analyze the size and power of hypothesis 

tests, graphical techniques inspired by Davidson and MacKinnon (1998a) are employed. Two visual tools, 

namely P-value plots1 and size-power curves2, are utilized to provide insights into the performance of the 

tests. 

Long Memory Tests Using Bootstrap Methodology for the Null Hypothesis. We examine P-value 

plots for the parametric bootstrap test b0 and the nonparametric bootstrap tests b1, b2, and b3, which are 

applied to the Hurst, Lo, Robinson, and Higuchi’s test statistics. These plots are compared to the 

corresponding asymptotic tests. We select four cases of the Data Generating Process (DGP) for the null 
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hypothesis by using the P-value functions (refer to the functions below). The P-value plots are generated 

based on an experiment consisting of 800 replications. Each panel represents the proportion of replications 

with P-values less than a given significance level, α, ranging from 0 to 1, for each of the five tests. 

Scenario for AR (1) Processes. The Data Generating Process (DGP) assumes the following under H0: 

 

𝑥𝑡 = 𝜙1 𝑥𝑡−1 +  𝜇𝑡 (8) 

 

𝜙1 ∈ (−1,1) (9) 

 

𝜇𝑡~ 𝑖𝑖𝑑 𝑁(0,1) (10) 

 

TABLE 1 

SELECTION OF Φ1 

 

Cases Hurst Lo Robinson Higuchi Jensen T 

1 0.2 -0.1 0.3 0.4 - 512 

2 0.7 0.8 0.6 1.0 - 1024 

3 -0.3 -0.8 -0.7 -0.9 - 256 

4 -0.5 -0.7 -0.5 -0.8 - 256 

 

Similar to previous studies (Peretti and Marimoutou, 2002), the asymptotic tests in our analysis exhibit 

notable size distortions, which can undermine the accuracy of inferences. However, it is evident that all the 

bootstrap tests effectively rectify these size distortions, even for high magnitudes of |φ1|. Multiple examples 

in Case 3, as demonstrated in Table 1, further emphasize the successful correction achieved by the bootstrap. 

Therefore, in this particular case, the utilization of the bootstrap method becomes essential. 

Scenario for AR(p) Processes. The Data Generating Process (DGP) assumes the following under H0: 

 

𝑥𝑡 = 𝜙1𝑥𝑡−1  + … +  𝜙𝑝𝑥𝑡−𝑝 + 𝜇𝑡 (11) 

 

(𝜙1 … 𝜙𝑝) 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑥𝑡  𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 (12) 

 

𝜇𝑡  ~ 𝑖𝑖𝑑 𝑁 (0,1) (13) 

 

In our analysis, we utilize asymptotic estimations of (φ1 · · · φp) values for an ARFIMA (0, d, 0) 

process selected through the Bayesian Information Criterion (BIC), where d ∈ (−0.5, 0.5). These 

estimations help determine the P-value functions (PVF) as a function of (φ1 · · · φp) for T = 128. The error 

terms follow a normal distribution, and we conduct 800 replications for each value of d, employing 

asymptotic distributions. 

Similar to previous cases, we examine the results to identify which cases to investigate, as outlined in 

Table 2 (where Case 4 represents the student case). Typically, the value of p is around five or ten. The 

bootstrap tests for Hurst, Lo, and Robinson show over-rejection, mainly due to the steep slopes observed in 

the P-value functions. However, the Higuchi bootstrap tests demonstrate quasi-perfect results, not because 

of the superiority of Higuchi’s estimator but because of the application of a double bootstrap method. The 

distortions in the bootstrap tests are generally lower compared to the asymptotic tests. Additionally, for a 

few examples of Case 2 parameters, please refer to the accompanying results. Therefore, considering 

bootstrap tests is recommended in these cases, preferably utilizing the double bootstrap approach, although 

it may require longer computation time. 

Size-Power Curves of Bootstrap Long Memory Tests. The size-power curves are analyzed for the 

parametric bootstrap test b0 and the nonparametric bootstrap tests b1, b2, and b3, in comparison to their 

respective asymptotic tests. Determining size-corrected power does not have a standardized approach 
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(Davidson and MacKinnon, 1996). In this study, I adopt the null Data Generating Process (DGP) 

characterized by “pseudo-true values” as defined by White (1982). These values represent the fixed DGP 

that is, at least asymptotically, the closest null to a given fixed DGP. Combinations of d and T from Table 

1 are selected for investigation, and experiments are conducted with 400 replications under H1 (alternative 

hypothesis) and H0 (null hypothesis), utilizing the same set of random numbers to avoid experimental errors. 

Scenario for ARFIMA (0, d, 0) Processes. The Data Generating Process (DGP) assumes the following 

under H1 (alternative hypothesis): 

 

xt ~ Gaussian or Student ARFIMA (0, d, 0) 

 

𝑑 ∈  (−0.5, 0.5) 

 

d values are extracted from Table 1. The Data Generating Process (DGP) under H0 is generated following 

the procedure outlined in paragraph 3.3. 

According to theoretical expectations, the power of the bootstrap test should be similar to that of the 

corresponding asymptotic test with size correction. We confirm here that the bootstrap method does not 

result in power loss. Across all cases, the intrinsic power curves of the bootstrap tests closely resemble 

those obtained from the asymptotic distribution, even when parameters are selected to potentially challenge 

the bootstrap tests.  

Case of Student Error Terms. To examine the performance of the nonparametric bootstrap, we simulate 

leptokurtic data using a Student’s t-distribution with five degrees of freedom for the error terms. To capture 

the excess probability in the tails, we increase the number of bootstrap replications to B = 399. For AR(1) 

processes, the correction of size distortions is nearly perfect for both parametric and nonparametric 

bootstraps, similar to the Gaussian cases. However, for AR(p) processes, the correction of size distortions 

is not as effective as in the Gaussian case, although both parametric and nonparametric bootstraps perform 

similarly. In all Student’s t cases, there is no noticeable power loss when utilizing bootstrap methods. 

Case of Unilateral P Value. The results for unilateral P value tests are comparatively weaker than those 

for bilateral P value tests. The size distortions are closer to the asymptotic distortions than the distortions 

observed in bilateral bootstrap tests. Although the power curves are very similar, the difference between 

unilateral and bilateral tests may not be discernible based on this criterion. However, this distinction is not 

significant since there are no issues with true power. 

 

Example: Long Memory Analysis for Bitcoin and US Dollar  

The examination of long-memory in asset markets has been a topic of interest, as demonstrated by the 

seminal work of Mandelbrot (1971). The application of R/S analysis to common stock returns was first 

explored by Greene and Fielitz (1977). Recent studies such as Fama and French (1988), Lo and MacKinlay 

(1988), and Poterba and Summers (1995) have provided evidence suggesting the presence of a long memory 

component in stock market prices. This analysis has also been extended to other assets, including gold 

prices (Booth and Kaen, 1979), foreign exchange rates (Booth, Kaen, and Koveos, 1982), and futures 

contracts (Helms, Kaen, and Rosenman, 1984). 

 

Data Description 

To illustrate the investigation of long-term memory in asset returns, we apply the aforementioned 

analysis to a specific dataset: daily observations of Bitcoin and US Dollar exchange rates. The dataset 

covers the period from 2019 to 2022, providing a comprehensive timeframe for analysis. 

In Figure 6a, we observe the price movements of Bitcoin and US Dollar, and it becomes apparent that 

these prices do not exhibit stationarity. This is further confirmed by conducting bootstrapped Dickey Fuller 

tests. Therefore, we will utilize logarithmic differencing to transform the data. Let {xt} represent the series 

of Bitcoin and US Dollar prices at time t, and we define the necessary transformations accordingly. 
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The returns series at time t ∈ {1, 2, . . . , T − 1} is obtained by applying the logarithmic differencing 

transformation: 

 

𝑑𝑥𝑡 = 𝑙𝑛(𝑥𝑡) − 𝑙𝑛(𝑥𝑡 − 1) (14) 

 

Furthermore, I analyze this dataset using the methodology developed in Ding et al. (1993), Ding and 

Granger (1996), and Granger and Ding (1996) to examine the presence of long memory in various 

speculative returns. To do so, I consider the absolute returns |dxt| and the squared returns 𝑑𝑥𝑡
2, which serve 

as reliable indicators of volatility. The expectation of 𝑑𝑥𝑡
2 estimates the variance, while the expectation of 

|dxt| estimates the standard deviation of the series. 

 

TABLE 2 

P-VALUE RESULTS FOR LONG MEMORY IN SERIES OF TRANSFORMED RETURNS OF 

BITCOIN PRICES 

 

Test method Hurst Lo Robinson 
Modified 

Higuchi 

P-value results for assessing long memory in the series of simple returns of Bitcoin prices 

Point estimated of d -0,093 -0,093 -0,208 -0,132 

Asymptotic P value 0,574 0,672 0,001 0,008 

Bootstrap 0 P value 0,418 0,545 0,000 0,107 

Bootstrap 1 P value 0,497 0,613 0,026 0,128 

Bootstrap 2 P value 0,497 0,613 0,026 0,107 

Bootstrap 3 P value 0,497 0,613 0,026 0,085 

P-value results for assessing long memory in the series of simple absolute returns of Bitcoin prices 

Point estimated of d -0,025 -0,025 0,472 0,333 

Asymptotic P value 0,000 0,000 0,000 0,000 

Bootstrap 0 P value 0,021 0,021 0,000 0,021 

Bootstrap 1 P value 0,005 0,005 0,005 0,043 

Bootstrap 2 P value 0,005 0,005 0,005 0,043 

Bootstrap 3 P value 0,011 0,005 0,005 0,021 

P-value results for assessing long memory in the series of simple square returns of Bitcoin prices 

Point estimated of d 0,498 0,498 0,934 0,874 

Asymptotic P value 0,000 0,000 0,000 0,000 

Bootstrap 0 P value 0,153 0,132 0,000 0,000 

Bootstrap 1 P value 0,169 0,174 0,005 0,016 

Bootstrap 2 P value 0,169 0,169 0,005 0,011 

Bootstrap 3 P value 0,164 0,159 0,005 0,005 
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TABLE 3 

P-VALUE RESULTS FOR LONG MEMORY IN SERIES OF TRANSFORMED RETURNS OF 

USD PRICES 

 

Test method Hurst Lo Robinson 
Modified 

Higuchi 

P-value results for assessing long memory in the series of simple returns of US prices 

Point estimated of d -0,080 -0,080 -0,180 -0,114 

Asymptotic P value 0,498 0,582 0,001 0,007 

Bootstrap 0 P value 0,362 0,472 0,000 0,092 

Bootstrap 1 P value 0,431 0,532 0,023 0,111 

Bootstrap 2 P value 0,431 0,532 0,023 0,092 

Bootstrap 3 P value 0,431 0,532 0,023 0,074 

P-value results for assessing long memory in the series of simple absolute returns of US prices 

Point estimated of d -0,022 -0,022 0,409 0,289 

Asymptotic P value 0,000 0,000 0,000 0,000 

Bootstrap 0 P value 0,018 0,018 0,000 0,018 

Bootstrap 1 P value 0,005 0,005 0,005 0,037 

Bootstrap 2 P value 0,005 0,005 0,005 0,037 

Bootstrap 3 P value 0,009 0,005 0,005 0,018 

P-value results for assessing long memory in the series of simple square returns of US prices 

Point estimated of d 0,432 0,432 0,809 0,758 

Asymptotic P value 0,000 0,000 0,000 0,000 

Bootstrap 0 P value 0,133 0,115 0,000 0,000 

Bootstrap 1 P value 0,147 0,151 0,005 0,014 

Bootstrap 2 P value 0,147 0,147 0,005 0,009 

Bootstrap 3 P value 0,142 0,138 0,005 0,005 

 

RESULTS OF THE STUDY 

 

The analysis of Bitcoin and U.S. price series in table 2 and 3, taking into account the impact of COVID-

19, yields valuable insights into the behavior of these assets during times of market uncertainty and 

economic disruptions. 

During the COVID-19 pandemic, financial markets experienced heightened volatility and significant 

price fluctuations. In table 2, Bitcoin, often regarded as a speculative and alternative investment, showcased 

its unique characteristics in response to the crisis. The results indicate a strong presence of long memory in 

Bitcoin’s return series, suggesting that the cryptocurrency exhibited persistent and dependent behavior 

throughout this period. This could be attributed to increased attention and interest in Bitcoin as a potential 

hedge against traditional financial markets or as a store of value during uncertainty. The positive estimates 

of the parameter “d” suggest positive dependence, implying that extreme price movements persisted for 

longer durations during the pandemic. This indicates that Bitcoin prices were influenced by both short-term 

shocks and longer-term trends, reflecting the evolving sentiment and expectations of market participants. 

In contrast, in table 3, the USD price series, representing traditional assets and the global reserve 

currency, exhibited relatively less pronounced long memory during the pandemic. This suggests that USD-

denominated assets, such as stocks or currencies, displayed relatively more stable behavior and mean-

reversion. The negative estimates of the parameter “d” in the USD return series suggest weak negative 
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dependence, implying that extreme price movements tended to revert back to the mean over time. This can 

be attributed to various factors, including central bank actions, fiscal stimulus measures, and market 

participants’ perception of the U.S. dollar as a safe haven during economic uncertainty. 

The observed differences in behavior between Bitcoin and the U.S. dollar in terms of long memory 

during the COVID-19 period highlight the distinct nature of these assets and their reactions to market 

shocks. Bitcoin’s long memory suggests its potential as a volatile and speculative investment during times 

of crisis, while the relatively less pronounced long memory in USD prices reflects the stability and liquidity 

of traditional USD-denominated assets. Investors seeking diversification or potentially higher returns may 

have been attracted to Bitcoin as a hedge against traditional markets during the pandemic. However, it is 

important to consider the inherent volatility and risks associated with Bitcoin when making investment 

decisions. 

It's worth noting that this interpretation assumes that the analysis accurately captures the impact of 

COVID-19 on the long memory behavior of Bitcoin and the U.S. dollar prices. The effects of COVID-19 

on financial markets were complex and multi-faceted, influenced by various factors beyond the scope of 

this analysis. Therefore, it is recommended to consider this interpretation in conjunction with a 

comprehensive assessment of other economic, geopolitical, and market-specific factors when making 

investment decisions. 

In conclusion, this study examined the long memory behavior of Bitcoin and the U.S. dollar (USD) 

prices during the COVID-19 pandemic. The results showed that Bitcoin displayed strong long memory, 

indicating persistent and dependent behavior in its returns. On the other hand, the USD prices exhibited 

relatively less pronounced long memory. 

These findings suggest that Bitcoin, as a speculative and alternative investment, may have been 

influenced by short-term shocks and longer-term trends during the pandemic. Investors seeking 

diversification or potential higher returns may have turned to Bitcoin as a hedge against traditional markets. 

However, it is important to consider the inherent volatility and risks associated with Bitcoin. 

Future research could explore additional factors and provide a more comprehensive understanding of 

the dynamics affecting Bitcoin and the USD prices. Monitoring and studying these assets will contribute to 

a deeper understanding of their roles and implications for global financial systems. 

As financial markets evolve, it is crucial to adapt to changing conditions and make informed decisions 

that drive innovation, stability, and sustainable growth in the future. 

 

CONCLUSION 

 

In conclusion, this study provides valuable insights into the interplay between long memory and 

bootstrap techniques in virtual and real currency markets, focusing on Bitcoin and the US dollar during the 

pre/post-COVID era. The findings confirm the presence of long memory in the examined currency markets 

and underscore the importance of accurate bootstrap utilization for robust analysis. The contrasting 

behaviors of Bitcoin and the US dollar highlight the distinct nature of these assets and their reactions to 

market shocks. Moving forward, further research could explore additional factors and extend the analysis 

to other cryptocurrencies and fiat currencies, deepening our understanding of their dynamics and 

implications for global financial systems. By monitoring and studying these assets, we can adapt to 

changing market conditions and make informed decisions that foster innovation, stability, and sustainable 

growth in the future. 
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ENDNOTES 

 
1. “P-value plots” are graphical representations used in statistical analysis to visualize p-values resulting from 

hypothesis tests. They typically display p-values against a test statistic or parameter of interest. “P-value 

plots” help understand the distribution of p-values, assess the significance of results, and identify potential 

trends or patterns in the data. They are commonly used to interpret statistical test results and aid decision-

making in empirical studies. 
2. “Size-power curves” are graphical representations showing the relationship between the significance level 

(size) and the power of a statistical test. They help assess the test’s ability to detect true effects and control 

for type I error rates. These curves are commonly used in power analysis and sample size determination for 

experimental design and hypothesis testing. 
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