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This research compares SERU manufacturing systems to traditional assembly lines, focusing on the impact 

of uncertainty in task processing time on production output. The study considers worker skill levels and 

team identity, using a stochastic mixed integer linear programming approach to model uncertainty and 

optimize workforce allocation.  Discrete event simulation is then integrated to evaluate performance using 

five key performance indicators (KPIs). Results show that SERU systems outperform traditional lines in 

terms of throughput when uncertainty is considered. The integrated approach provides more reliable 

performance data than deterministic optimization alone. The study also highlights the advantages of SERU 

systems when worker skill levels and team identity are factored in. This research fills a gap in the literature 

by proposing a stochastic optimization approach that considers uncertainty and worker skill levels, and by 

integrating stochastic optimization with simulation for comprehensive analysis. This approach provides 

valuable guidance for production managers in optimizing production systems. 
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INTRODUCTION 

 

SERU is a type of manufacturing system design that aims to optimize the use of resources and improve 

production efficiency. In a SERU system, workers are assigned multiple or all of the tasks involved in 

making a product, rather than having each worker specialize in one task as in a traditional assembly line. 

In the Japanese industry, the SERU manufacturing system is a revolutionary approach to production (Süer 

et al., 2019; Zhang et al., 2017). It involves breaking away from traditional assembly line systems and 

replacing them with smaller, cellular units known as SERU (Singh 2017). These units consist of equipment 

and one or more workers responsible for producing one or more products. The SERU production system 

was first explored by companies in the electronics industry, such as Fujitsu NEC, Canon, Panasonic, Casio, 

Olympus, Pioneer, and Sony, mainly in the assembly of printers, digital cameras, digital video cameras, 
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and module parts for digital electronics (Singh 2017, Abdullah 2018). The implementation of the SERU 

production system can be challenging for products with complex processes and heavy manufacturing 

requirements. However, it is widely accepted among those who use SERU that it is best suited for situations 

where there is a low demand volume but a high variety of products (Villa 2013, Abdullah 2018). 

The SERU system is a human-centered method with a focus on cross-trained workers and low 

automation (Suer 2019). The system replaces a single, long production line with many short ones, with 

movable workstations and light equipment contributing to the quick configuration for multiple product 

types. The SERU System is distinguished from the other systems by configurable workstations that are not 

fixed, and it is known for its flexible nature, which allows for not just production but also assembly, 

packaging, and testing of products (Yin et al., 2017). The flexibility of the SERU system comes from the 

grouping of similar parts or products into a single cell. The equipment is grouped based on similarities in 

products rather than the functions of the machines. Instead of treating each product as a separate job, the 

SERU system groups similar parts or products into a product family based on similarities in their 

characteristics and manufacturing methods (Villa 2013).  

SERU configurations can take on different shapes, including U-shaped, L-shaped, and I-shaped lines, 

which are commonly seen in practice (Villa 2013). Three types of SERU have been proposed in literature: 

divisional, rotating, and Yatai. A divisional SERU is similar to a traditional conveyor assembly line, but 

with workers taking on a larger number of tasks. In a rotating SERU, multiple workers with multiple skills 

move from station to station following a fixed order to complete tasks. A Yatai SERU is a special form of 

rotating SERU, where a single worker is responsible for assembling the entire product from start to finish, 

without moving between workstations (Yu et al., 2013). SERU is a combination of Lean and Agile 

production principles in manufacturing processes and layout design. Its implementation in Japanese 

companies has shown to be more efficient than traditional assembly lines in terms of reduced workforce 

and maintained productivity levels (Yin et al., 2017). The three key characteristics of SERU are Kanketsu, 

meaning all tasks are completed within a SERU cell system, Majime, meaning all resources are kept close 

to the workbench to reduce non-value-added movements, and Jiritsu, meaning self-management and 

learning organization (Singh, 2017).  

The benefits of the SERU system include its high level of flexibility, quick turnaround time, low 

inventory levels, and positive impact on worker morale. It leads to decreased lead time, setup time, WIP 

and finished product inventories, cost and workplace space, resulting in increased productivity and 

competitiveness. However, there are limitations to the size of each SERU unit, and there is a large 

investment required in training workers to become multi-skilled (Treville et al. 2017, Poon and Chan 2016). 

There may also be an increase in variable production costs for things like equipment and logistics. The 

transition to SERU can be challenging as it requires replacing large, automated machines with smaller 

general-purpose machines in each cell and investing in training multi-skilled workers. Additionally, the 

system puts a lot of pressure on workers. This is because the system requires workers to be responsible for 

the entire production process, which can be demanding and increase pressure. Also, the increased variability 

of the work process and the requirement for quick response times may also contribute to the pressure on 

workers in the SERU manufacturing system. However, numerous research studies over several decades 

have shown that SERU can significantly improve productivity compared to traditional assembly lines, with 

a focus on reducing makespan, manpower, and training cost (Yu & Tang, 2019). 

Specific contributions made in this paper towards its primary goal are as follows. This study proposes 

an integrated stochastic mixed integer nonlinear optimization and simulation approach to compare SERU 

vs. traditional assembly line considering processing time uncertainty and worker skill levels. Secondly, five 

key performance indicators (KPIs) are used to provide a comprehensive evaluation of SERU vs. traditional 

assembly line manufacturing system’s performance, namely: throughput, cycle time, WIP, waiting time 

and capacity utilization. Thirdly, a new worker skill-level scale is proposed and proposed stochastic 

optimization approach is experimented on five workforce team types, namely: newbie, beginner, 

intermediate, good and great team. Fourthly, the research contributes to the literature by proposing an 

integrated stochastic optimization and discrete event simulation framework, providing guidance to 

production managers for designing and optimizing their production systems using a SERU layout. 
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The remainder of this paper is organized as follows. Section 2 presents a detailed literature review on 

SERU. Section 3 provides the mathematical formulation of the stochastic mixed integer non-linear 

programming model. Section 4 discusses case study development and Section 5 provides framework results 

for our selected problem on our generated case study. Finally, Section 6 presents conclusions and discusses 

limitations of the paper. 

 

LITERATURE REVIEW 

 

SERU production systems have gained significant attention in recent years due to their potential for 

improving productivity and reducing lead times in manufacturing settings. To better understand the benefits 

and challenges of SERU systems, numerous studies have been conducted to optimize or simulate these 

systems under either stochastic or deterministic conditions. A comprehensive review of SERU production 

systems, including a thorough comparison with other production models and practical implementations, are 

provided in (C. Liu et al., 2014; Yin et al., 2017; Yu & Tang, 2019; X. L. Zhang et al., 2017).  

Table 1 presents a brief overview and comparison of the recent and relevant literature on SERU systems 

considering the following attributes: the type of solution method, how processing times are modeled, and 

the objective(s) of the proposed models. We had a couple of key findings which necessitated to conduct 

our study. First of all, while SERU systems are majorly used in labor intensive manufacturing settings, task 

processing times are predominantly considered deterministic in the literature, except a handful of works 

(e.g., Aboelfotoh et al., 2018, Zhang et al. 2023). In reality, worker skills critically impact the task 

processing time and depending on the experience (skill level) of the worker, which makes it critical to 

model task processing times stochastic considering uncertainty (e.g., standard deviation of task processing 

time). 

It was found that majority of the studies primarily focused on developing a single or bi-objective 

optimization approach, while the predominant objective function was minimizing makespan and/or cycle 

time. However, it is noteworthy to state that certain critical performance indicators such as work-in-process 

(WIP), waiting time, and capacity utilization have not received adequate attention in the reviewed literature, 

in contrast these KPIs are heavily used in production systems’ design and management. This is mostly due 

to the limitations of implementing optimization approaches. While optimization models, whether it’s a 

mathematical or heuristic optimization, critically address the workforce allocation problem, the limits of 

objective function hinder the validation of findings. In this context, simulation approaches could potentially 

address these limitations by providing a more comprehensive assessment of production system performance 

considering other KPIs. As shown in Table 1, while many recent studies aim to enhance production 

efficiency and resource allocation in SERU production systems through optimization and heuristic 

techniques, the use of simulation techniques stayed relatively limited. We were able to track two works that 

employed simulation in SERUs (Deepak et al., 2017 and Zwierzynski & Ahmad 2018), where the solution 

approach solely consists of simulation. 
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TABLE 1 

SUMMARY OF RECENT RELEVANT LITERATURE ON SERU 

 

Literature Solution Method 
Processing 

Times 
Objective(s) 

C. Liu et al., 2013 

Optimization 

(Three-stage 

heuristic algorithm) 

Deterministic 
Minimize total training costs and 

balance processing times 

Ying & Tsai, 2017 
Optimization 

(SAIG) 
Deterministic 

Minimize training cost and balance 

cost 

Deepak et al. 2017 Simulation Stochastic Minimize cycle time 

Yu et al., 2017 

Optimization (Exact 

Solution and 

variable-length 

encoding algorithm) 

Deterministic 
Minimize number of workers without 

increasing makespan 

Aboelfotoh et al., 

2018 
Neural Network Stochastic Minimize cycle time 

Lian et al. 2018 
Optimization 

(NSGA-II)  
Deterministic 

Minimize deviations from average 

workload of SERUs 

Wu et al. 2018 Optimization Deterministic 
Maximize throughput and balance 

workload  

Zwierzynski & 

Ahmad 2018 
Simulation Stochastic 

Maximize productions and worker 

utilization while minimizing cost and 

waiting time 

Yılmaz, 2019 

Optimization (Exact 

Solution and 

NSGA-II) 

Deterministic 
Minimize makespan and reduce 

workload imbalance among workers 

Sun et al., 2019 

Optimization 

(cooperative 

coevolution 

algorithm) 

Deterministic Minimize makespan 

Ayough et al., 2020 

Optimization 

(invasive weed 

optimization 

algorithm) 

Deterministic 
Minimizing flow time and workforce 

allocation 

Yılmaz, 2020 
Optimization 

(Genetic algorithm) 
Deterministic Minimize makespan 

F. Liu et al., 2021 

Optimization (K-

means-based 

NSGA-II) 

Deterministic 
Minimize makespan and balance the 

workers’ workload 

Jiang et al., 2021 
Optimization (Exact 

Solution) 
Deterministic 

Minimize total waiting time, total 

absolute differences in waiting time, 

and total load 

Fujita et al. 2022 
Optimization 

(Monte Carlo) 
Deterministic Maximize expected profit 

Zhang, Song et al. 

2022 

Optimization 

(Hybrid genetic 

algorithm)  

Deterministic 
Minimize total completion time of all 

jobs 
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Zhang, Wang et al. 

2022 

Optimization 

(Improved genetic-

simulated annealing 

algorithm) 

Deterministic Maximize expected profit 

Zeng et al., 2022 

Optimization 

(epsilon-constraint 

method, NSGA-II, 

SPEA2) 

Deterministic 

Minimize total labor hours and 

workload unfairness for multi-skilled 

worker assignment problem 

Shan, 2022 

Optimization 

(Simulated 

Annealing NSGA-

II, and entropy-

weighted TOPSIS) 

Deterministic 
Minimize makespan and maximize 

workers’ expenditure 

Gai et al., 2022 
Optimization (Exact 

Solution) 
Deterministic Minimize makespan 

Zhang et al. 2023 

Optimization 

(Hybrid genetic-

simulated annealing 

algorithm) 

Stochastic  Minimize expected makespan 

 

In this section, we will examine various optimization and simulation techniques used in recent studies 

to solve SERU production problems and review their objectives in improving system performance. We 

summarize the studies based on their research focus, including worker skill levels, stochastic models, 

comparison with the traditional systems, and learning effect. 

The productivity of labor-intensive cells is directly influenced by the performance of the workers. (Süer 

et al., 2019) propose a preliminary approach that takes into account the product life cycle stages and worker 

skill level to implement SERU production systems. The authors highlight that these factors are often 

neglected and can have a significant impact on the overall performance of the system. The proposed 

approach involves dividing the product life cycle into four stages (introduction, growth, maturity, and 

decline) and assigning different tasks to workers based on their skill level and the stage of the product life 

cycle.  

Several studies address the deterministic problem of multi-skilled worker assignment in SERU systems 

(C. Liu et al., 2013) (Ying & Tsai, 2017) (Wu et al., 2018) (Lian et al., 2018) (Aboelfotoh et al., 2018) (F. 

Liu et al., 2021) (Zeng et al., 2022) and (Shan, 2022). (C. Liu et al., 2013) formulate a mathematical model 

with multiple objectives to minimize total training costs and balance processing times among workers. 

Different mathematical models, heuristic algorithms, and solution approaches have been proposed to 

optimize worker assignments, minimize costs, enhance throughput, and balance workload distribution 

among workers. The authors propose a three-stage heuristic algorithm to solve the model and validate the 

model and algorithm’s performance through computational cases. (Ying & Tsai, 2017) investigate the 

multiskilled worker training and assignment problem in SERU production systems. The focus is on 

minimizing the total cost by considering workers’ training cost and the balance cost of processing times. 

The paper presents a two-phase heuristic algorithm (SAIG) to solve the problem effectively. 

Wu et al., (2018) study the cross-trained worker assignment problem for two different types of SERUs: 

divisional and rotating SERU. The authors propose a model to maximize the throughput of SERU while 

balancing the workload of workers under considering skill levels. The models consider various factors such 

as task time, available working time, skill levels of workers, and the required number of workers. The 

results shows that the proposed approaches enhance throughput and workload balance. (Lian et al., 2018) 

model the multi-skilled worker assignment problem as a bi-objective mathematical model to improve the 

inter-SERU workload balance and the inter-worker workload balance. They develop a meta-heuristic 

algorithm based on NSGA-II to solve the proposed problem. (Sun et al., 2019) present a cooperative 
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coevolution algorithm for SERU production, aiming to minimize the makespan by simultaneously solving 

the SERU formation and SERU scheduling problems. The algorithm combines a genetic algorithm with 

local search for SERU formation and an ant colony optimization algorithm for improved SERU scheduling. 

(Zeng et al., 2022) introduce a bi-objective mixed-integer nonlinear programming model for a similar 

problem in SERU production systems. The proposed model aims to minimize total labor hours and 

workload unfairness. The authors present three solution approaches, including the epsilon-constraint 

method, non-dominated sorting genetic algorithm 2 (NSGA-II), and improved strength Pareto evolutionary 

algorithm (SPEA2), to solve the problem. They emphasize the need to balance production efficiency and 

fairness in SERU. When efficiency measures are prioritized without considering the workload distribution 

among workers, it can be undesirable for highly skilled workers who may end up shouldering a 

disproportionate workload.(F. Liu et al., 2021) focus on the assignment of cross-trained workers in a hybrid 

SERU production system, which combines divisional and rotating SERU types. A bi-objective 

mathematical model is developed to minimize the makespan and balance the workers’ workload in each 

SERU. For large-scale instances, an NSGA-II-based memetic algorithm and two K-means-based NSGA-II 

algorithms are proposed. (Shan, 2022) investigate an application of converting assembly lines to SERU 

production in a Chinese electronics assembly company during the transition to a customer-to-manufacturer 

business model. It proposes a production line improvement scheme and presents a mathematical model for 

optimizing the makespan and workers’ expenditure. The Simulated Annealing NSGA-II algorithm and 

entropy-weighted TOPSIS approach are used to determine solutions. The study finds that SERU production 

and multiskilled workers align well with the customer-to-manufacturer model, and effective worker 

allocation strategies can reduce the number of employees and makespan in SERUs. (Gai et al., 2022) 

consider a SERU loading problem to minimize a production batch’s makespan through a SERU system. 

They propose a min-max integer optimization model to obtain the optimal allocation. The method is 

extended to rotating SERUs, addressing the allocation of items to minimize makespan. 

Some recent studies have focused on the scheduling and allocation problems in stochastic SERU 

production systems (Fujita et al., 2022) (Z. Zhang, Wang, et al., 2022) and (Z. Zhang et al., 2023). (Fujita 

et al., 2022) study a worker and production allocation problem in SERU production systems under uncertain 

demand. The approach uses the Monte Carlo technique and formulates the optimization problem as a bi-

level mixed-integer linear programming problem. The first step involves solving a worker allocation 

problem before the demand is realized, and the second step involves allocating the production quantity 

based on the observed demand realization. The paper demonstrates the effectiveness of the proposed 

method through several numerical problems. (Z. Zhang, Wang, et al., 2022) study a SERU loading problem 

system with a downward substitution and random product demands and yields, where the objective is to 

maximize an expected profit. The SERU loading problem involves assigning workers to workstations to 

perform tasks in a given sequence, while the downward substitution means that a lower skilled worker can 

replace a higher skilled worker in a specific task. The authors propose an improved genetic-simulated 

annealing algorithm for the SERU loading problem under uncertainty in product demand. (Z. Zhang et al., 

2023) develop a hybrid genetic-simulated annealing algorithm to solve the stochastic rotating SERU 

scheduling problem with resource allocation, job deterioration, learning effect, and setup time. The 

objective of the study is to minimize the expected makespan where the scheduling problem contains 3 

SERUs and 10 orders. In the study, the processing times are randomly generated using normal distribution 

and uniform distribution ranging from 5 to 40. The performance of the proposed hybrid genetic-simulated 

annealing algorithm is tested on the developed instances and compared with genetic algorithm (GA) and 

particle swarm optimization (PSO) algorithm. The results show that the hybrid algorithm proposed in this 

paper is more suitable to solve the stochastic SERU scheduling problem considering dynamic resource 

allocation, job deterioration, learning effect and setup time than GA and PSO.  

In addition to optimization studies, a handful of researchers studied SERU production with simulation. 

(Deepak et al., 2017) conducted a simulation study in a heavy-duty manufacturing industry by converting 

a fixed-worker-assembly-line into a SERU system. They found that the proposed SERU system offers better 

resource utilization by reducing cycle time and improving productivity. Furthermore, Zwierzyński & 

Ahmad (2018) conducted a simple simulation experiment comparing the efficiency of traditional assembly 
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line production with shorter assembly lines and different configurations of SERU cells. In the experiment, 

the traditional assembly line produced 753 pieces of the finished product. Then, the assembly line was 

converted into two shorter assembly lines, where each employee performed two assembly operations. After 

that, the assembly process was converted into three SERU cells, with two employees performing three 

assembly operations. Finally, the assembly process was converted into six SERU cells, with one employee 

performing six assembly operations. The goal was to determine which system would be more efficient. The 

experiment was limited to the assembly process of a single product and did not take into account many 

other complex factors. 

Several studies conducted a comparison between the SERU system and the traditional assembly line 

system to showcase the improvements offered by the SERU system. (Yu et al., 2017) focus on line-SERU 

conversion in manufacturing, aiming to reduce the number of workers without increasing the makespan. 

Two exact algorithms search the solution space in different directions, while a variable-length encoding 

heuristic algorithm is designed for large-scale instances. (Aboelfotoh et al., 2018) focus on selecting either 

Classical Assembly Line or SERU based on the higher output rate for a set of product operations. A neural 

network model is developed to predict the preferred strategy by considering worker skill level variation and 

inputs such as the number of tasks, product flexibility, and task processing time variation. The aim is to 

create a decision support tool that helps decision makers select the manufacturing strategy without the need 

for complex mathematical models. The neural network model achieved an 89.4% accuracy in predicting 

the preferred strategy. (Yılmaz, 2019) address the bi-objective workforce scheduling problem in a SERU 

production system by considering interSERU worker transfer. The study focuses on two objectives: 

minimizing the makespan and reducing workload imbalance among workers. A non-dominated sorting 

genetic algorithm-II (NSGA-II) is employed to solve large-sized problems. The results show that allowing 

worker transfer leads to better outcomes. (Yılmaz, 2020) addresses the workforce scheduling problem to 

minimize the makespan by considering interSERU worker transfer in the SERU production environment. 

The proposed problem is examined through experimental design, with several scenarios considered. The 

results demonstrate that allowing interSERU worker transfer leads to a significant reduction in the 

makespan. (Ayough et al., 2020) integrate job rotation scheduling and line-cell conversion problems. A 

nonlinear integer programming model called SERU-JRSP is introduced to address this integrated problem. 

To solve the SERU-JRSP, an invasive weed optimization algorithm is developed. The computational results 

demonstrate that job rotation scheduling leads to shorter flow time and fewer assigned operators in the 

SERU system. 

In addition to the aforementioned aspects of SERUs, some works took into account learning effect. The 

consideration of DeJong’s learning effect in the SERU system is receiving increased attention in the recent 

literature. (Jiang et al., 2021) focus on a yatai SERU scheduling problem that consider past-sequence-

dependent setup time and DeJong’s learning effect. The proposed problem aims to minimize total waiting 

time, total absolute differences in waiting time, and total load. The study proposes a general exact solution 

method by transforming SERU scheduling problems into assignment problems, which can be solved in 

polynomial time. (Z. Zhang, Song, et al., 2022) present a scheduling problem in SERU production system, 

taking into consideration DeJong’s learning effect and job splitting with the objective of the total 

completion time of all jobs. A non-linear integer programming problem is provided, and they propose a 

branch and bound algorithm and a local-search based hybrid genetic algorithm for solving small size and 

large size instances, respectively. They conduct numerical experiments to compare randomly generated 

scenarios and evaluate the effectiveness of their approach. 

Overall, these studies highlight the potential benefits of using SERU production systems in various 

manufacturing systems and address different optimization problems related to production design and 

control aspects of SERUs. The current literature on the SERU production system mainly focuses on 

optimization problems, including scheduling, worker allocation, and product loading, under various 

uncertainties. However, the impact of workers’ skill levels in task processing time was not addressed 

considering uncertainty in task completion times. Secondly, traditional assembly lines were argued to have 

better performance against SERU but the literature does not distinguish the applications of SERUs between 

labor intensive and machine intensive systems, which could critically change the selection of the better 
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production design alternative. Moreover, some systems use both labor and machine as a hybrid fashion. 

Thus, it is critical to compare SERUs against traditional assembly lines under uncertain task processing 

times in a labor-intensive setting, since machine intensive manufacturing systems typically favor the 

assembly lines and don’t have much of a significant task processing time variation compared to human 

work force. Thirdly, while it is critical to solve SERUs or assembly line optimization problems with 

analytical models, these models do not provide a comprehensive understanding about the production system 

performance due to the limitation of setting a solo or dual objective functions, while production system 

performance is typically monitored by using multiple key performance indicators (KPIs) such as 

throughput, Work-in-process (WIP), waiting times, and system usage (resource utilization). Most of the 

literature approach the SERU system design with optimization approaches, which often necessitates a 

simulation approach to investigate the aforementioned KPIs. The state of art lacks studies where 

optimization and simulation approaches are employed back-to-back to provide a complete understanding 

of KPIs. 

To address these important gaps, this study contributes to the state of art in the following aspects. First, 

worker skills can critically impact production system performance in labor intensive systems. Therefore, 

this study proposes a stochastic optimization approach to model the worker skill level and task processing 

time relationship considering the uncertainty in task performance. Second, this paper provides a 

comprehensive investigation of the impact of workers’ skill levels by comparing the SERUs against the 

traditional assembly line. This can significantly help managers to design workstations and systems that can 

accommodate workers with different skill levels and uncertain task processing times. Third, the production 

system performance of SERUs is assessed by coupling discrete event simulation (DES) with the stochastic 

optimization model’s results with a focus on throughput, WIP, waiting times, and capacity utilization. This 

provides a comprehensive evaluation of the system’s performance. Fourth, we propose an integrated 

stochastic optimization and discrete event simulation framework. The modeling approach and results can 

provide a guidance to the production managers to make informed decisions, when designing and optimizing 

their production systems on a SERU layout. 

 

METHODOLOGY 

 

The methodology of this paper consists of integrated stochastic optimization and discrete simulation 

models. The stochastic optimization model is used to find worker and task allocation problem in the 

assembly line, where task times are probabilistic and derived based on the skill level. Thus, a mixed integer 

linear programming model with a stochastic chance constraint was built, and explained in the following sub 

section.  

 

Stochastic Mixed Integer Linear Programming (SMILP) Model 

In this section, a mixed integer non-linear programming model is introduced. This objective is to 

minimize cycle time such that optimal worker-task allocation is carried out where there is a single product, 

unidirectional (flow shop) process flow with multiple process steps. Each process step could be performed 

by any worker; however, process times are worker dependent and considered to be stochastic. 

 

Indices 

i:  task index 

j:  workstation index 

k:  worker index 

M:  cycle time 

n:  number of tasks 

m:  number of workstations, 

w:  number of workers 

𝛼:  Risk threshold 

µijk:  mean operation time of task i in workstation j by worker k 
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𝜎𝑖𝑗𝑘: standard deviation of operation time of task i in workstation j by worker k 

Ei:  earliest station for task i that can be assigned to, given the precedence relations 

Li:  latest station for task i that can be assigned to, given the precedence relations 

 

Decision Variables 

Xijk: 1, if task i is assigned in workstation j to worker k; 0, otherwise 

Yjk:  1, if worker k is assigned in workstation j; 0, otherwise 

 

Minimize Z = M (1) 

 

Subject to 

 
∑ ∑ 𝑋𝑖𝑗𝑘

𝑤
𝑘=1 = 1𝑚

𝑗=1 (for i = 1, 2, …, n) (2) 

 

𝑝 (𝑍𝑗 ≤
(∑ ∑ µ 𝑖𝑗𝑘∗𝑋𝑖𝑗𝑘 𝑤

𝑘=1 −𝑀𝑛
𝑖=1 )

√∑ ∑ 𝜎𝑖𝑗𝑘∗𝑋𝑖𝑗𝑘 𝑤
𝑘=1

𝑛
𝑖=1

) ≥ (1 − 𝛼) for j =  1, 2, … , m (3) 

 

 

𝑋𝑖𝑗𝑘  ≤ 𝑌𝑗𝑘 (for i = 1, 2, …, n; for j = 1, 2, …, m; for k = 1, 2, …, w) (4) 

 
∑ 𝑦𝑗𝑘

𝑚
𝑗=1 = 1 (for k = 1, 2, …, w) (5) 

 
∑ 𝑦𝑗𝑘

𝑤
𝑘=1 = 1 (for j = 1, 2, …, m) (6) 

 

∑ 𝑋𝑖𝑗𝑘
𝐿𝑎
𝑚=𝐸𝑎  ≤  ∑ 𝑋𝑖𝑗𝑘

𝐿𝑏
𝑚=𝐸𝑏  (7) 

 

Equation (1) is the objective function, which aims to reduce the cycle time. Cycle time is the bottleneck 

workstation total process time. Equation (2) is developed to ensure that each task is assigned to a 

workstation and a worker. Equation (3) is the stochastic constraint. It is developed to ensure that each 

station’s total process time does not exceed the cycle time based on a risk threshold of∝ which ranges 

between 0 and 1. Equation (4) ensures that all tasks are assigned to an open workstation, which should have 

at least 1 worker assigned. Equations (5) and (6) ensure that every worker is assigned to a workstation, and 

each workstation is assigned to a worker, respectively. Finally, equation (7) ensures that precedence 

relationships between the consecutive tasks are not violated, where ‘b’ is an immediate follower of ‘a’. 

 

Simulation Model Integration 

Simulation models for assembly line and SERU shops were built with Simio simulation software (See 

Fig. 1). During the simulation experiments, 1000 replications and 1 day run were used as the 

experimentation parameters to be able to compare with Abdullah (2018)’s results and the proposed 

stochastic optimization approach’s results. The optimized worker to station allocations were taken from 

optimization model’s and SERU and assembly line workstations were created as shown in the screenshots 

of simulation models (See Fig. 1a and 1b).  
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FIGURE 1 

SCREENSHOTS OF SIMULATION MODELS 

 

 
 

Case Study 

Assembly Line vs. SERU Manufacturing Shops 

The schematic provided in figure 1 presents an assembly line (left side) and a yatai SERU system (right 

side). In figure 1a, the precedence flow of tasks carried out to produce the given example product make up 

the assembly line. In this assembly line (figure 2a), the product is being produced over six succeeding tasks, 

which are completed on four workstations. Each workstation has one worker. For instance, worker 1 carries 

out task 1, worker 2 carries out tasks 2 and 3, and so on. As shown in Fig. 2b, there are four yatai SERUs. 

Each worker is responsible to carry out all the six tasks to assemble a complete product.  

 

FIGURE 2 

(a) ASSEMBLY LINE AND (b) YATAI SERU 

 

 
 

The Relationship Between Skill Levels and Task Processing Times  

A skill level scale ranging from 1 to 7 in a deterministic mixed integer linear programming model was 

first introduced by Abdullah (2018), then used by (Abdullah & Süer, 2019), skill level 1 representing the 

a. SERU System Layout 

b. Assembly line layout 
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worst performing and 7 representing the best performing worker as shown in Table 1. However, Abdullah 

(2018) only considered the mean processing time (mPT), in other words expected value of processing time, 

using a deterministic optimization model and did not account for the variability in task processing time 

(variance or standard deviation). As a contribution of this study, we propose the skill-level-based processing 

times as a normally distributed random variable to incorporate both the mean processing time (mPT) and 

the standard deviation of processing time (sPT). Unlike Abdullah (2018), this addition allows us to capture 

the performance of workers from both an average performance and variability perspectives, accounting for 

factors such as inexperience and task-dependent variations. For example, the worst performer (WP), 

assumed as an inexperienced worker, is expected to exhibit high mPT and sPT values. Their performance 

may vary significantly across tasks and even within repetitive tasks due to their lack of experience. 

Conversely, the excellent performer (EP) is expected to have the shortest mPT and sPT. By considering the 

inherent uncertainty in task processing times, our approach provides a more comprehensive understanding 

and formulation of worker performance. Table 1 presents both the mean and standard deviation of task 

processing times, complementing the previous focus solely on mean processing times. Modeling task 

processing times as normally distributed random variable necessitates a stochastic optimization approach. 

 

TABLE 2  

SKILL LEVELS AND PROBABILISTIC TASK TIMES (IN MINUTES) 

 

Skill level 
Mean Task  

Processing Time (mPT) 

St. Dev. of Task  

Processing Time (sPT) 
Worker Type 

1 μ+3σ 3σ Worst Performer (WP) 

2 μ+2σ 2σ Very Poor Performer (VPP) 

3 μ+1σ 1.5σ Poor Performer (PP) 

4 μ 1σ Average Performer (AP)  

5 μ-1σ 0.666667σ Good Performer (GP) 

6 μ-2σ 0.5σ Very Good Performer (VGP) 

7 μ-3σ 0.3333σ Excellent Performer (EP) 

 

In Table 2 (Abdullah, 2018; Abdullah & Süer, 2019; Khalafallah & Egilmez, 2021) an example of 

normally distributed processing times for an average worker (AP) is presented for six tasks involved in the 

assembly of a product. The table displays the standard mean and standard deviation of task processing time, 

where the standard deviation is set to 15% of the mean task time. 

 

TABLE 3 

MEAN AND STANDARD DEVIATION OF TASK PROCESSING TIME FOR AP 

 

  Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 

Mean (μ) 10 8 5 7 3 9 

St dev (σ = 0.15*μ) 1.5 1.2 0.75 1.05 0.45 1.35 

 

To provide a clearer understanding of how the mean and standard deviation processing times from 

Table 1, and the standard average worker task times from Table 2, are utilized, we present an example 

scenario with a newbie team of inexperienced workers in Table 3. This newbie team consists of four 

workers, with one worker classified as an excellent performer (skill level 7) and the remaining workers as 

inexperienced worst performers (skill level 1). Table 3 showcases the relationship between worker skill 

level and the corresponding mean and standard deviation of task processing times, which are incorporated 

into the stochastic mixed integer linear programming model. In Table 4, the calculated skill levels for the 

example newbie team are presented alongside their respective mean and standard deviation processing 
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times (mPT and sPT). The task times listed in Table 4 are computed using the notation provided in Table 

1, along with the standard time data from Table 2. For instance, the mean task processing time for a worker 

with a skill level of 7 (classified as an excellent performer) is calculated as μ-3σ. Taking Task 1 as an 

example from Table 2, with a standard mean processing time (μ) of 10 and a standard deviation (σ) of 1.5, 

the excellent performer’s mean processing time is determined as μ-3σ=10-3*1.5=5.5, with a standard 

deviation of 0.3333σ = 0.3333*1.5=0.49995. 

 

TABLE 4 

SAMPLE SKILL LEVEL MATRIX OF A NEWBIE TEAM 

 

Skill 

Matrix 

Worker 1 

(Excellent 

Performer) 

Worker 2 

(Worst 

Performer) 

Worker 3 

(Worst 

Performer) 

Worker 4 

(Worst 

Performer) 

Task 1 7 1 1 1 

Task 2 7 1 1 1 

Task 3 7 1 1 1 

Task 4 7 1 1 1 

Task 5 7 1 1 1 

Task 6 7 1 1 1 

 

TABLE 5 

THE MEAN AND STANDARD DEVIATION OF TASK PROCESSING TIME (IN MINUTES) OF 

A NEWBIE TEAM 

  
Worker 1(Skill Level 

7):  

Excellent Performer 

Worker 2 (Skill Level 

1):  

Worst Performer 

Worker 3 (Skill Level 

1):  

Worst Performer 

Worker 4 (Skill Level 

1):  

Worst Performer 

Task mPT sPT mPT sPT mPT sPT mPT sPT 

1 5.50 0.49995 14.5 4.50 14.5 4.50 14.5 4.50 

2 4.40 0.39996 11.6 3.60 11.6 3.60 11.6 3.60 

3 2.75 0.249975 7.25 2.25 7.25 2.25 7.25 2.25 

4 3.85 0.349965 10.15 3.15 10.15 3.15 10.15 3.15 

5 1.65 0.149985 4.35 1.35 4.35 1.35 4.35 1.35 

6 4.95 0.449955 13.05 4.05 13.05 4.05 13.05 4.05 

*mPT: Mean Task Processing Time, sdPT: Standard Deviation of Task Processing Time 
 

Experimentation Data-1 

A total of 10 datasets were directly adopted from (Abdullah, 2018) for fair comparison and continuity 

of the scientific literature, since the proposed stochastic optimization (SMILP) approach in this paper is 

compared with the existing deterministic optimization approach used in (Abdullah, 2018). Table 5 depicts 

the skill levels of four-worker teams in each dataset, along with mean and standard deviation of skill levels. 

The skill levels of workers were randomly generated in 7 datasets and remaining 2 datasets consists of 

entirely average workers in Dataset 10 and excellent workers in Dataset 9 (See the standard deviation of 

skill levels in datasets 9 and 10 are 0 since all skill levels are the same).For instance, in Dataset 1, worker 

1’s skill levels range between poor performer (PP) and average performer (AP), since each worker could 

perform differently on different tasks. Similarly, worker 2’s skill levels range between poor performer (PP) 

and average performer. Furthermore, worker 3’s skill level is an average performer across all the tasks, and 

worker 4’s skill levels range between average performer (AP) and good performer (GP). Each dataset’s 
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corresponding mean and standard deviation of skill levels are also provided in Table 5. See Appendix file 

for more information. 

 

TABLE 6 

DATASET CHARACTERISTICS OF (ABDULLAH, 2018) 

 

Data 
Worker Skill Levels Team Skill Levels 

Worker 1 Worker 2 Worker 3 Worker 4 Mean St. Dev. 

Dataset 1 PP - AP PP-AP AP AP-GP 3.8 1.5 

Dataset 2 AP PP-AP PP-AP AP-GP 4 1.6 

Dataset 3 AP PP-AP AP AP-GP 4 0.7 

Dataset 4 AP-GP AP-GP AP AP 4.1 1.4 

Dataset 5 AP AP-GP AP-GP AP 4.3 2.2 

Dataset 6 PP-AP AP-GP AP-GP AP-GP 4.5 2.1 

Dataset 7 PP-AP AP-GP AP-GP AP-GP 4.5 2.1 

Dataset 8 VGP-EP AP WP-VPP PP-AP 3.8 2.1 

Dataset 9 EP EP EP EP 7 0 

Dataset 10 AP AP AP AP 4 0 

 

Experimentation Data-2 

Although we initially employed previously used datasets (Experimentation Data-1) developed by 

Abdullah (2018) to maintain continuity in the literature and ensure a fair comparison with our proposed 

approach; we found that employing 7 skill levels could be very exhaustive in terms of experimentation and 

could pose challenges for interpretation and practical application by production managers. Furthermore, 

since the skill levels were randomly generated in Abdullah (2018), which is advantageous from a 

randomized experimentation perspective; it made it difficult to draw definitive conclusions regarding the 

superiority of either the SERU system or the assembly line, when worker team identity is not considered.  

To address the aforementioned disadvantages, we propose using a set of 5 skill levels instead of 7, as 

illustrated in Table 6. We took the average performer (AP) worker proposed by Abdullah (2018) as a 

starting point, and calculated the mPT and sPT values based on the notation shown in Table 6. 

 

TABLE 7  

PROPOSED NEW SKILL LEVELS, MPT AND SPT FORMULAS 

 

Skill Level mPT sPT Worker Type 

1 μ+2σ 2σ Inexperienced 

2 μ+1σ 1.5σ Beginner 

3 μ 1σ Intermediate 

4 μ-1σ 0.666667σ Good 

5 μ-2σ 0.5σ Great 

 

When generating the experimentation data-2, we focused on the team identity as a starting point. Team 

identity could have a significant impact on manufacturing performance, particularly in labor-intensive 

production systems where worker performance, in other words skill level, strongly influences production 

throughput. Because, teams are not assembled randomly in real world but based on experience of workers. 
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Given that labor-intensive manufacturing processes are often the primary application area for SERU 

systems in the literature, we chose to generate datasets based on five types of team identity: “Newbie”, 

“Beginner”, “Intermediate”, “Good”, and “Great”. In real-world manufacturing shops, there is typically at 

least one lead worker who possesses deep experience and knowledge of the entire system and its tasks. This 

lead worker often trains others, particularly new workers in the shop. Therefore, we assumed that each team 

consists of at least 1 “Great” worker. Moreover, the team’s identity was characterized by the skill levels of 

the remaining workers (see Table 7). By designing teams with these specific identities, we aimed to 

investigate the performance of different team types between assembly line and SERU structures. We 

designed these five teams with the team identities in the hopes of making the application of the proposed 

research framework and the interpretation convenient and effective. See Appendix file for more 

information. 

 

TABLE 8  

PROPOSED NEW TEAM TYPES 

 

Team Identity Worker 1 Workers 2, 3, and 4 

Inexperienced Team Great Newbie 

Beginner Team Great Beginner 

Intermediate Team Great Intermediate 

Good Team Great Good 

Great Team Great Great 

 

RESULTS 

 

The results are explained in two sections. In the first section, the first set of experimentation data was 

obtained from Abdallah, 2018 and the proposed stochastic optimization approach was compared in terms 

of SERU vs. traditional assembly line for continuity of the literature. Then, the second section presents the 

results of experimentation with the proposed stochastic optimization approach based on the newly generated 

dataset with respect to set of five skill levels. 

 

Results of Experimentation Data-1 

The results of first experimentation with 10 datasets obtained from Abdullah (2018) was presented in 

Figure 3 and Table 8 and Table 9. See Appendix file for more information. Figure 3 presents results of 

proposed stochastic optimization approach in comparison of SERU vs. assembly line in terms of throughput 

(the total production amount/day). Tables 8 and 9 provides results of simulation experiments based on the 

stochastically optimized worker-task allocation. Twenty simulation models were developed for the 10 

datasets experimentation on SERU and traditional assembly line. 

According to the optimization results (Fig. 3), SERU shop outperformed the traditional assembly line 

for Datasets 3, 4, 6, 8, 9, and 10 while the traditional assembly line was found to be superior for Datasets 

1, 2, 5, and 7.Here, it is important to note that such optimization approaches while we propose a novel 

stochastic optimization approach, won’t be able to provide a holistic understanding about the manufacturing 

system’s performance due to the limits of objective function (e.g. being limited to throughput or cycle time 

observed in many studies in the literature). Thus, it becomes an important task to simulate the stochastically 

optimized solution and measure the performance from the perspective of 5 KPIs (throughput, cycle time, 

WIP, waiting time, and capacity utilization). 
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FIGURE 3 

RESULTS OF STOCHASTIC OPTIMIZATION APPROACH WITH EXPERIMENTATION 

 

 
 

Table 8 shows the results of simulation experiments based on the throughput and cycle time in terms 

of mean and half-width. In terms of throughput, cycle time, and WIP, same results were obtained with the 

stochastic optimization approach and SERU found superior in datasets 3,4,6,8,9, and 10. Moreover, in terms 

of waiting time and capacity utilization KPIs, SERU was superior in all of the datasets. From just-in-time 

manufacturing and total quality management perspective, close to zero waiting times and close to 100% 

capacity utilization are ideal for a highly competitive and good performing manufacturing system. 

 

TABLE 9  

RESULTS OF SIMULATION EXPERIMENTS BASED ON THE PROPOSED  

SMILP APPROACH 

 

Datasets 

Throughput 

(Units per 8-hour workday) 

Cycle Time 

(minutes) 

Superior 

System 

Assembly Line SERU 
Assembly 

Line 
SERU  

 Average 
Half-

width 
Average 

Half-

width 
Average Average  

Dataset 1 45.8 0.1133 42.1 0.0172 10.5 11.4 Assembly Line 

Dataset 2 47.9 0.1408 43.4 0.0288 10 11 Assembly Line 

Dataset 3 37.5 0.1412 43.8 0.0205 12.8 11 SERU 

Dataset 4 25.7 0.1305 43.4 0.0194 18.7 11.1 SERU 

Dataset 5 54 0.1027 45.5 0.0388 8.9 10.6 Assembly Line 

Dataset 6 37.8 0.1657 45.2 0.0306 12.7 10.6 SERU 

Dataset 7 55.2 0.1132 51.5 0.0402 8.7 9.3 Assembly Line 

Dataset 8 45.4 0.1083 46.6 0.0244 10.6 10.3 SERU 

Dataset 9 69.1 0.1267 79.5 0.1361 6.9 6 SERU 

Dataset 10 20.2 0.1083 44 0.0032 23.8 10.9 SERU 
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TABLE 10  

RESULTS OF SIMULATION EXPERIMENTS BASED ON THE PROPOSED SMILP 

APPROACH CONT’D 

 

Datasets 
WIP Waiting Time (Hours) Utilization (%) 

Assembly Line SERU Assembly Line SERU Assembly Line SERU 

Dataset 1 74.8 75.9 4.5 3.8 91.6 100.0 

Dataset 2 73.9 75.2 4.3 3.8 90.5 100.0 

Dataset 3 79.2 75.2 4.6 3.8 89.5 100.0 

Dataset 4 85.1 75.3 4.0 3.8 74.3 100.0 

Dataset 5 71.4 74.3 4.0 3.8 68.3 100.0 

Dataset 6 79.2 74.3 4.1 3.8 85.1 100.0 

Dataset 7 70.5 71.3 4.0 3.9 84.0 100.0 

Dataset 8 75.2 73.7 4.5 3.8 91.8 99.9 

Dataset 9 63.3 56.6 4.7 3.8 93.3 98.3 

Dataset 10 87.8 75.1 4.0 3.9 72.5 100.0 

Mean 76.04 72.69 4.27 3.82 84.09 99.82 

Std. Dev. 7.16 5.80 0.28 0.04 9.14 0.53 

 

Results of Experimentation Data-2 

Results of experimentation data-2 was focused on the impact of team type. Five types of teams were 

characterized and experimented with the deterministic optimization model proposed by the closest work in 

the literature (Abdullah, 2018) and then compared with the results of the proposed stochastic optimization 

approach. See Appendix file for more information. Table 10 shows the results obtained based on the 

Abdullah (2018)’s deterministic optimization model, while the proposed stochastic optimization approach’s 

results are provided in Table 11. It was important to find out that SERU outperformed the traditional 

assembly line in all team types. 

 

TABLE 11  

SUMMARY OUTPUT FOR SERU AND ASSEMBLY LINE (DETERMINISTIC MODEL BY 

ABDULLAH (2018)) 

 

Deterministic Model Output in (Units per day) Superior system % Difference 

(SERU vs. Assy. 

Line) 
Dataset Name: SERU Assembly 

Data set 1-Newbie Team 39.51 35.56 SERU 10% 

Data set 2-Beginner Team 43.84 37.65 SERU 14% 

Data set 3-Intermediate Team 49.23 40.00 SERU 19% 

Data set 4-Good Team 56.14 47.06 SERU 16% 

Data set 5- Great Team 65.31 57.14 SERU 13% 
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TABLE 12  

SUMMARY OUTPUT FOR SERU AND ASSEMBLY LINE (THE PROPOSED SMILP MODEL) 

 

Stochastic Model Output in (Units per day) Superior system % Difference 

(SERU vs. Assy. 

Line) 
Dataset Name: SERU Assembly 

Data set 1-Newbie Team 35.23 30.15 SERU 14% 

Data set 2-Beginner Team 39.78 33.15 SERU 17% 

Data set 3-Intermediate Team 45.64 35.96 SERU 21% 

Data set 4-Good Team 52.80 42.07 SERU 20% 

Data set 5- Great Team 61.65 51.55 SERU 16% 

 

DISCUSSION 

 

The literature on production system design (e.g., assembly line balancing, cellular layout, process 

layout, product layout, etc.) is typically overwhelmed with sophisticated optimization approaches from 

mixed integer linear programming to nonlinear optimization and metaheuristics (Egilmez et al., 2019; 

Mosadegh et al., 2020). While improving optimization procedures of production system design as well as 

control (e.g., scheduling) is critical, it is equally or arguable more important to study these solution 

procedures from a comprehensive perspective. Because, while production managers make a strategic or 

tactical decision on production system layout (design) and control (MPS, scheduling, sequencing, etc.), 

they typically need to look at several key performance indicators (KPIs) (Egilmez et al., 2019; Egilmez & 

Süer, 2014). Among the limitations of optimization approaches, they exclusively focus on one or two key 

metrics as the focal point of optimization, while other KPIs are neglected. This study proposes an integrated 

stochastic optimization and simulation approach which could enable practitioners to replicate while 

contributing to the state of art in the following ways: stochastic optimization to address uncertainty in task 

processing times as a result of different skill levels; multi-KPI evaluation: throughput, cycle time, WIP, 

waiting time and capacity utilization, team types and impact of team diversity in production system 

performance. Furthermore, it is crucial to evaluate optimization results as shown in this study, optimization 

results not only yield only average performance (e.g., throughput) while neglecting the impact of 

uncertainty (half-width, but also limits the analytical approaches focus on optimization parameters. When 

coupled with simulation, half-width results provide statistically reliable results as well as multiple KPIs 

could be investigated. 

In terms of the benefits of employing stochastic optimization, the results indicate that stochastic 

optimization approaches not only enable defining select production system parameters such as processing 

times, as a random variable but also provide the results within much more close proximity to the simulation 

experiments’ results. In this context, simulation can play a crucial role in providing a much-expanded 

performance overview over a period of time (mimicking steady state long run) with statistically significant 

results. The state of art and production practitioners could benefit with these integrated approaches with 

multi-faceted KPIs to make more informed decisions about the production system design and control phases 

(Alhawari et al., 2021; Egilmez et al., 2012). 

 

CONCLUSION 

 

This study contributes to the understanding and optimization of SERU production systems by 

addressing important gaps in the existing literature. By proposing a stochastic optimization approach, the 

study models the relationship between worker skill levels and task processing time, considering uncertainty, 

which is a significant contribution in the field. Additionally, the research provides a comprehensive 

investigation by comparing SERU systems with traditional assembly lines, highlighting the impact of 

worker skill levels and uncertain task processing times. By integrating stochastic optimization models with 
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discrete event simulation, the study evaluates production system performance using multiple key 

performance indicators, offering a comprehensive evaluation of the system’s performance. Moreover, the 

research proposes an integrated stochastic optimization and discrete event simulation framework, providing 

valuable guidance to production managers for designing and optimizing their production systems using a 

SERU layout. These contributions enhance our understanding of SERU systems and support informed 

decision-making in production system design and optimization. Considering that labor-intensive 

manufacturing processes are commonly associated with SERU systems in the literature, we decided to 

create datasets based on different team styles. As a result, we developed five types of teams: “Newbie,” 

“Beginner,” “Intermediate,” “Good,” and “Great” teams. Each team consists of one expert worker and the 

remaining workers possess the same skill level. The findings of this study demonstrate that the SERU 

system surpasses traditional assembly lines in terms of throughput when considering the uncertainty in task 

processing times. Additionally, the integrated optimization and simulation approach proposed in this 

research offers more statistically reliable system performance indicators compared to the deterministic 

optimization-only approaches typically used in the literature. The study further highlights the benefits of 

the SERU system in terms of production output by considering worker skill levels within team identities. 

As a future research direction, it will be important to study the impact of learning effect on production 

performance. In addition, investigation of other team identity characteristics would be important and left as 

a future work. 
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