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This current study explores the application of Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) models to forecast and model crude oil price volatility. Crude oil is a vital commodity whose 

price fluctuations significantly impact global economies, energy markets, and strategic decisions of both 

National Oil Companies (NOCs) and International Oil Corporations (IOCs). Using the GARCH(1,1) and 

GARCH(1,2) models, this study evaluates the effectiveness of these models in capturing the dynamic nature 

of oil price volatility. The findings indicate that while both models fit the data well, the GARCH(1,1) model 

is preferred due to its parsimonious nature and comparable forecast accuracy. Despite including an 

additional lag in the GARCH(1,2) model, it did not significantly outperform the GARCH(1,1) model in 

predictive performance. The study further analyzes the residuals and autocorrelation characteristics, 

highlighting the potential for model refinement. The study underscores the importance of selecting an 

appropriate model complexity, incorporating external factors, and exploring advanced methodologies to 

enhance forecast accuracy. These insights are critical for developing effective risk management strategies 

and informing policy decisions in volatile crude oil markets. 
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INTRODUCTION 

 

Ensuring the sustainability of crude oil supply is paramount for the profitability and overall 

performance of both National Oil Companies (NOCs) and International Oil Corporations (IOCs) (Osho, 

2023). Crude oil is an essential energy source, chemical material, and strategic resource for socio-economic 

development. Fluctuations in crude oil prices can significantly impact a country's economic development, 

social stability, and national security (Wu & Zhang, 2014). Consequently, developing scientifically 

grounded methods for accurately predicting the future price movements of crude oil is particularly 

important. Such methods can help address the extreme risks in the oil industry and uncover profitable 

opportunities. As a result, the volatility in the prices of crude oil poses a critical challenge for NOCs and 

IOCs and the global crude oil market (Osho et al., 2005).  

In recent decades, advancements in hydraulic fracturing technology, commonly known as fracking, 

have led to a remarkable increase in international crude oil reserves and production. Fracking is an effective 
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stimulation technique employing fluids and materials to create and restore minor fractures within reservoir 

formations. This technique enhances production capabilities and increases productivity from new and 

existing oil and gas wells. As a result, oil and gas recovery from formations that were once considered 

impossible to produce by reservoir engineers and production economists has become a reality. The 

combination of sustained crude oil supply, enabled by fracking, and accurate forecasting methodologies 

holds the potential to address the challenges posed by volatile crude oil prices. By implementing effective 

strategies and leveraging scientific insights, NOCs, IOCs, and the global crude oil market can navigate the 

dynamic landscape, mitigate risks, and seize favorable opportunities for sustainable growth and profitability 

(Uwakonye et al.,2006). 

In the United States, where hydraulic fracturing technology is primarily noticeable, the U.S. Energy 

Information Administration estimates that the U.S. crude oil production will average about 12.2 million b/d 

in 2019, a surge of about 10% compared with that of the 2018 daily production output level. By 2020, it 

suggested that the forecast crude oil production would increase by 1.0 million b/d and to an annual average 

of 13.2 million b/d. This plunging rate of daily crude oil output growth levels also imitates comparatively 

flat crude oil price levels and dawdling growth in the general productivity index and oil well performance. 

The prevailing global economic slowdown and apprehensions regarding a worldwide recession have 

significantly overshadowed concerns related to insufficient oil supply. Forecasts indicate that the average 

crude oil prices in 2023 are projected to be around $92 per barrel, followed by an estimated $80 per barrel 

in 2024, lower than the anticipated $100 per barrel in 2022. However, it is essential to highlight that these 

prices will remain well above the average of $60 per barrel observed over the past five years. It is essential 

to acknowledge the high level of uncertainty associated with these estimates, as several factors have the 

potential to impact global supply and demand dynamics substantially. Factors influencing oil production 

include EU sanctions imposed on Russia, the G7 oil price cap, OPEC+ production capacity, the outlook for 

U.S. shale oil, and the utilization and replenishment of strategic oil inventories. On the demand side, key 

considerations encompass the possibility of a global recession and the easing of COVID-19 restrictions in 

China. These factors collectively contribute to the dynamic nature of oil markets and the challenges faced 

in accurately predicting future price trends. 

 

FIGURE 1  

OIL PRICE VOLATILITY FROM 2011- 2022 

 

 
 

Over the past two and a half years, crude oil prices have experienced significant fluctuations due to 

supply and demand disruptions, sometimes co-occurring. These price movements reflect the unpredictable 
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nature of the global economy. An illustrative example of this volatility happened when the price of Brent 

crude oil dropped from a "normal" level of $68 per barrel at the end of 2019 to a mere $14 per barrel in 

April 2020, primarily driven by the widespread effects of the COVID-19 pandemic. Subsequently, in March 

2022, the price surged to $133 per barrel following Russia's invasion of Ukraine. Concerns regarding a 

potential recession in the United States have caused the price to decline again. However, if the Chinese 

economy rebounds from the sluggish state induced by its zero- COVID-19 policies, the price of crude oil 

could experience a sharp increase. Thus, these recent fluctuations highlight the volatile nature of energy 

markets and their close association with global economic conditions. 

The majority of studies on crude oil production forecasting and modeling have concentrated on using 

traditional decline curve analysis methods to generate predictions for future oil and gas reserves in both 

conventional and unconventional wells. Many production reservoir economists consider forecast 

estimations to be crucial, as they foster not only strong engagement from forecast users in monitoring and 

enhancing forecast performance but also offer clear insights into the strategies, direction, and financial 

outcomes of both National Oil Companies (NOCs) and International Oil Corporations (IOCs). Crude oil is 

a vital and globally traded commodity, serving as a primary energy source for numerous industries and 

economies worldwide. The price of crude oil exhibits substantial volatility, which can have far-reaching 

implications for various stakeholders, including producers, consumers, investors, and policymakers. 

Therefore, understanding and accurately predicting fluctuations in crude oil prices is paramount, enabling 

market participants to make informed decisions, manage risks, and devise effective strategies. 

 

Oil Prices Volatility 

The volatility of oil prices holds considerable importance for financial practitioners and market 

participants alike. These fluctuations impact decision-making processes for producers and consumers in 

strategic planning and project evaluations. Furthermore, they significantly influence investors' choices in 

oil-related investments, portfolio distribution, and risk management. Consequently, accurately predicting 

future crude oil prices is critical in policy-making and financial spheres. 

Crude oil price volatility refers to the degree of fluctuation in crude oil prices over a given period. It is 

influenced by many factors, ranging from worldwide supply and demand patterns to geopolitical events, 

macroeconomic conditions, and market sentiment. Fluctuations in oil prices can have significant economic 

consequences, impacting industries such as transportation, manufacturing, and energy production and 

influencing inflation rates and consumer spending. Thus, accurate forecasting and modeling of fluctuations 

in crude oil prices provide valuable insights for market participants. Producers and consumers can better 

anticipate price fluctuations, enabling them to optimize production levels, manage inventory, and adjust 

pricing strategies. Investors can make more informed decisions regarding commodity investments, portfolio 

diversification, and risk management. Additionally, policymakers can assess the potential impact of volatile 

crude oil prices on their respective economies, formulate appropriate policies, and develop contingency 

plans to mitigate adverse effects. 

 

PRIOR STUDIES 

 

Over the years, researchers and analysts have employed various methodologies and models to forecast 

and model fluctuations in crude oil prices. These approaches range from traditional time series analysis 

techniques, such as ARCH/GARCH models, to more advanced methods utilizing machine learning and 

artificial intelligence algorithms. Each approach has its strengths and limitations, with some models 

capturing the inherent volatility patterns of oil prices more effectively than others. This literature review 

explores the existing body of research on forecasting and modeling fluctuations in crude oil prices. It seeks 

to provide a comprehensive overview of the different methodologies and models utilized, examine the 

determinants of crude oil price volatility, and evaluate the strengths and limitations of various approaches. 

By synthesizing the findings from a diverse range of studies, this review will contribute to a deeper 

understanding of the current state of research in this field and identify potential avenues for future 

investigation.  
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Overall, accurate forecasting and modeling of fluctuations in crude oil prices play a crucial role in the 

efficient functioning of energy markets and in informing the strategic decisions of various stakeholders. As 

volatility in crude oil prices continues to shape global economic landscapes, further advancements in 

forecasting methodologies are necessary to understand this complex phenomenon and mitigate the potential 

risks associated with crude oil price fluctuations. Thus, accurate and effective prediction of oil prices is 

essential for extending the life cycle of reservoirs, improving reservoir productivity, and enhancing recovery 

factors. These forecasts provide production and reservoir economists with accurate, real-time insights that 

support budgeting, planning, and decision-making for field development (Osho, 2023). Notably, GARCH 

forecasting models demonstrate greater precision and operational efficiency in dynamically forecasting oil 

price volatility, further strengthening their value. 

According to Hou and Suadri (2022), the empirical literature frequently employs parametric GARCH 

approaches to analyze and forecast fluctuations in crude oil prices. However, this study adopts a different 

approach by utilizing a nonparametric method to model and predict fluctuations in crude oil prices. 

Specifically, it focuses on two critical crude oil markets: Brent and West Texas Intermediate (WTI). It 

demonstrates that the out-of-sample volatility forecast of the nonparametric GARCH model outperforms a 

broad range of parametric GARCH models. These findings are reinforced by employing robust loss 

functions and conducting Hansen's (2005) superior predictive ability test. The enhanced forecasting 

accuracy of fluctuations in crude oil prices achieved through the nonparametric GARCH model indicates 

its appeal and viability as an alternative to the commonly employed parametric GARCH models. Crude oil 

fluctuations prices have been the subject of extensive research due to their profound impact on global 

economies, financial markets, and energy-related industries (Baumeister & Kilian, 2016). Accurately 

modeling and forecasting oil price volatility is essential for risk management, investment decisions, and 

policy formulation. Over the years, Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models have emerged as a popular tool for analyzing and predicting oil price volatility (Bollerslev, 1986). 

This literature review aims to provide a comprehensive overview of the existing research on oil price 

volatility and GARCH models, highlighting key findings, methodological advancements, and potential 

areas for future research.  

 

GARCH Models and Oil Price Volatility  

The groundbreaking work of Bollerslev (1986) introduced the GARCH model, which has since become 

a widely used framework for modeling volatility. GARCH models capture the time-varying nature of 

volatility by incorporating past information and conditional variance. Researchers have applied GARCH 

models to investigate the volatility of oil prices, focusing on a range of factors that influence oil price 

fluctuations. These factors include supply and demand dynamics, geopolitical events, macroeconomic 

indicators, and financial market conditions (Sadorsky, 1999; Filis et al., 2011). The GARCH models have 

provided valuable insights into the behavior of oil price volatility and its implications for market 

participants. 

 

Empirical Studies on Oil Price Volatility and GARCH Models 

Empirical studies have explored the relationship between oil price volatility and economic variables 

using GARCH models. For instance, Engle and Patton (2001) analyze the impact of oil price volatility on 

stock market returns, finding a significant relationship between the two. Their study highlights the 

importance of incorporating oil price volatility in asset pricing models and risk management strategies. 

Furthermore, studies have investigated the spillover effects of oil price volatility on other financial markets, 

such as bond markets, exchange rates, and commodity markets (Hammoudeh & Li, 2008; Narayan et al., 

2015). These studies demonstrate the interconnectedness of oil price volatility with broader financial market 

dynamics.  

 

Advancements in GARCH Models 

Researchers have made significant advancements in applying GARCH models to capture the 

complexities of oil price volatility. For example, including long memory components in GARCH models 
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has improved their ability to capture the persistence observed in oil price volatility (Baillie et al., 1996). 

Additionally, integrating exogenous variables, such as macroeconomic indicators and geopolitical events, 

has enhanced the forecasting accuracy of GARCH models (Afanasyeva et al., 2017). Engle, Ghysels, and 

Sohn (2013) introduce the concept of dynamic conditional correlation GARCH models, allowing for a time-

varying correlation between oil price volatility and other variables.  

 

Challenges and Future Directions 

While GARCH models have been valuable in modeling oil price volatility, several challenges and 

opportunities exist for future research. First, structural breaks and regime shifts in oil price volatility pose 

challenges for traditional GARCH models. Various studies have explored the use of regime-switching 

GARCH models to capture these abrupt changes in volatility patterns (Basher et al., 2016). Second, the 

integration of high-frequency data and the analysis of intraday volatility require the development of more 

sophisticated GARCH models (Martens et al., 2019). Third, incorporating alternative data sources, such as 

sentiment analysis and social media data, can enhance the predictive power of GARCH models (Zhong et 

al., 2020). Finally, exploring nonlinear relationships, asymmetries, and fat-tailed distributions in GARCH 

models can provide a more comprehensive understanding of oil price volatility (Bouri et al., 2019).  

Finally, this literature review provides a comprehensive overview of the research on oil price volatility 

and GARCH models. The utilization of GARCH models has contributed significantly to understanding and 

forecasting oil price volatility. The empirical studies highlight the impact of oil price volatility on various 

financial markets and the importance of incorporating it into risk management strategies. Addressing the 

challenges and exploring the potential advancements in GARCH models would provide further insights 

into the complex dynamics of oil price volatility and its implications for global markets. 

 

MODEL FRAMEWORK AND SPECIFICATION 

 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) framework is a widely used 

statistical model in econometrics and finance. It allows for analyzing and predicting time-varying volatility, 

a crucial aspect of many financial time series. This framework builds upon the Autoregressive Conditional 

Heteroskedasticity (ARCH) model, introduced by Engle (1982), by incorporating additional autoregressive 

terms to capture the persistence of volatility.  

The ARCH model forms the foundation for the GARCH framework. It assumes that the conditional 

variance of a time series depends on its past squared errors. The ARCH(p) model is expressed as:  

 

σ²t = α₀ + α₁ε²(t-1) + α₂ε²(t-2) + ... + αpε²(t-p) (1) 

 

where σ²t represents the conditional variance at time t, εt denotes the error term at time t, and α₀, α₁, ..., αp 

are non-negative parameters. The GARCH model extends the ARCH model by introducing autoregressive 

terms for the conditional variance. The GARCH(p, q) model is expressed as:  

 

σ²t = α₀ + α₁ε²(t-1) + α₂ε²(t-2) + ... + αpε²(t-p) + β₁σ²(t-1) + β₂σ²(t-2) + ... + βqσ²(t-q) (2) 

 

where σ²t represents the conditional variance at time t, εt denotes the error term at time t, α₀, α₁, ..., αp are 

non-negative parameters for the ARCH terms, and β₁, β₂, ..., βq are non-negative parameters for the GARCH 

terms. Estimation and Inference: Various methods can be employed to estimate the parameters of the 

GARCH model, such as maximum likelihood estimation (MLE) or Bayesian methods. MLE is commonly 

used due to its simplicity and efficiency. The estimation procedure involves maximizing the log-likelihood 

function, derived based on the assumption of normally distributed errors.  

 

Inference and Model Selection  

Once the GARCH model is estimated, statistical inference can be conducted to assess the significance 

of the parameters and evaluate the model's goodness of fit. Hypothesis tests, such as the Wald test or 
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likelihood ratio test, can be employed to determine the significance of individual parameters. Model 

diagnostics and goodness-of-fit tests are often performed to select the appropriate GARCH model 

specification. Commonly used diagnostics include the Ljung-Box test for residual autocorrelation and the 

Jarque-Bera test for normality of residuals. The GARCH framework provides a flexible and powerful tool 

for modeling and forecasting time-varying volatility in oil and gas price data.  

 

RESULTS 

 

Upon examining the descriptive characteristics of the variables outlined in Appendix 1 and the summary 

statistics presented in Table 1, the results of the stationarity assessments were performed using both the 

augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, which are detailed in Table 3. The findings 

from the PP test suggest that stationarity is achieved for all variables upon first differencing. 

 

Analysis Series Stationarity 

An analysis of the stationarity of the oil price series was conducted, which is crucial for understanding 

its properties and informing subsequent economic modeling. The Augmented Dickey-Fuller (ADF) test, a 

widely used statistical test, was employed to examine the presence of a unit root, indicating non-stationarity. 

 

TABLE 1 

AUGMENTED DICKEY-FULLER ADF TEST RESULTS 

 

ADF Statistic p-value Used Lag Observations Critical Value 1% Critical Value 5% 

-1.6513 0.4564 0 74 -3.522 -2.9015 

 

The ADF statistic does not fall below the critical values, and the p-value exceeds standard significance 

levels, indicating the series is non-stationary. The Augmented Dickey-Fuller (ADF) test is employed to 

determine displays of a unit root, suggesting it is non-stationary. The null hypothesis posits that the series 

displays a unit root, suggesting it is non-stationary, whereas the alternative hypothesis contends that the 

series is stationary. The significance levels for the critical values were established at 1%, 5%, and 10%. The 

ADF test statistic did not surpass these critical thresholds, and the corresponding p-value was substantially 

above the conventional threshold of 0.05, failing to reject the null hypothesis. Consequently, this suggests 

that the oil price series remains non-stationary.  

 

FIGURE 2 

TREND OF OIL PRICE OVER TIME 
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Recognizing this attribute is vital for accurately modeling the data and ensuring the reliability of future 

forecasting efforts. Given the non-stationary nature of the oil price data series, it is recommended that 

further analyses involving differencing or transformation techniques be conducted to induce stationarity 

prior to engaging in additional econometric modeling. Undertaking this step is imperative to enhance the 

reliability and validity of the findings derived from the study. The autocorrelation characteristics of the oil 

price series were examined, which are crucial for identifying patterns and cycles in the data. The 

Autocorrelation Function (ACF) was employed to analyze how values in the series correlate with past 

values, providing insights into potential seasonal or cyclic trends. The ACF plot reveals how much the oil 

price series values correlate with their respective lagged values. Observations from the ACF plot can 

indicate the presence of autocorrelation, which is helpful for forecasting models and understanding the 

data's structure. 

 

FIGURE 3 

ACF PLOT OF OIL PRICE SERIES 

 

 
 

The autocorrelation results suggest that certain lags may hold significant predictive power for the series, 

which could be leveraged in forecasting and time series modeling. Further analysis could include examining 

partial autocorrelation or developing ARIMA models based on identified lags. The result indicates the 

presence of heteroscedasticity in the Oil price series using the Breusch-Pagan test. Heteroscedasticity, the 

condition where variance changes over time, can affect the reliability of standard regression analysis, 

making detection crucial. The Breusch-Pagan test is applied to determine if the residuals of a linear 

regression model exhibit non-constant variance, suggestive of heteroscedasticity. 

 

TABLE 2 

RESULTS OF BREUSCH-PAGAN AND F-TESTS FOR HETEROSKEDASTICITY IN 

OIL PRICE SERIES 

 

Metric Value 

LM Statistic 2.5505e+01 

LM-Test p-value 4.4114e-07 

F-Statistic 3.7618e+01 

F-Test p-value 4.0181e-08 

 

As the Breusch-Pagan test indicates, heteroscedasticity necessitates using robust estimation techniques 

or transformation of variables to ensure the validity of inferential statistics derived from the model. Table 
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2 presents the results of the Breusch-Pagan and F-test, both employed to examine the existence of 

heteroscedasticity within the oil price series. The Breusch-Pagan test yielded an LM Statistic of 25.505, 

with a highly significant p-value of 4.4114e-07, indicating that the null hypothesis of homoscedasticity can 

be rejected. This suggests that the variance of the residuals is not constant over time, confirming the 

presence of heteroscedasticity. Such a finding highlights the need for models accounting for changing 

volatility, making GARCH models particularly suitable for this analysis. 

 

FIGURE 4 

SCATTER PLOT OF RESIDUALS 

 

 
 

The F-test, which further tests for heteroscedasticity, produced an F-Statistic of 37.618 with a p-value 

of 4.0181e-08, reinforcing the conclusions drawn from the Breusch-Pagan test. The extremely low p-values 

in both tests indicate strong evidence against the null hypothesis, suggesting that the oil price series exhibits 

significant volatility clustering. This underscores the importance of using robust statistical models to 

accurately capture and forecast the dynamic nature of oil price fluctuations. These results justify the 

application of GARCH models in subsequent analyses to effectively address the observed 

heteroscedasticity in the data. 

 

ARIMA and ACF/PACF Analysis 
The ARIMA modeling and autocorrelation analysis was conducted on the oil price series, specifically 

focusing on the effects of first differencing. The analysis aims to identify autocorrelation characteristics 

post-differencing, using ARIMA (1,2,1) to predict future values based on the data's past values. The ACF 

and PACF plots provide insights into the data's correlation structure at different lags, which is essential for 

understanding the temporal dependencies in the series. Such analyses help in specifying the terms of the 

ARIMA model. 
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FIGURE 5 

ACF AND PACF PLOTS OF THE FIRST DIFFERENCED SERIES 

 

 
 

ARIMA Model and Residual Analysis on Oil Price Series 

This residual analysis of the oil price series using an ARIMA(1,2,1) model, focusing on the 

autocorrelation and distribution of residuals, was conducted, including testing for autocorrelation (Ljung-

Box) and normality (Jarque-Bera) of residuals to assess model adequacy. 

 

FIGURE 6 

PACF ARIMA(1,2,1) OF RESIDUALS 
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The analysis suggests that while the ARIMA(1,2,1) model adequately captures the autocorrelation in 

the Oil price series, the residuals are not normally distributed, indicating potential model inadequacies, and 

the provided plots reveal significant autocorrelations at specific lags, justifying the model parameters 

chosen for the ARIMA(1,2,1) model. The Ljung-Box test on residuals indicates a p-value close to 0.487, 

suggesting that autocorrelation is still present at lag 1. This might imply that adding AR or MA components 

could improve the model. 

 

TABLE 3 

LJUNG-BOX AND JARQUE-BERA TEST RESULTS 

 

Ljung-Box p-value Jarque-Bera p-value 

0.487 0.0 

 

The Heteroskedasticity test has a p-value of 0.11, suggesting no robust evidence of heteroskedasticity 

in the residuals. The Jarque-Bera test gives a p-value of 0.0, indicating that the residuals are relatively 

normally distributed. Given the results, especially the Ljung-Box test indicating potential autocorrelation 

in the residuals, exploring ARIMA models with AR and MA components might be beneficial. Adjusting the 

model to include these components could improve the model's ability to capture the data's underlying 

patterns. The study explores model selection techniques with a specific ARIMA model to determine the 

best AR and MA orders. 

 

TABLE 4 

ARIMA(1,2,1) MODEL SUMMARY: SARIMAX RESULTS 

 

Dep. Variable:       Oil price    

No. Observations:                    75 

Model:                  ARIMA(1, 2, 1)    

Log Likelihood                 -244.194 

AIC    494.388 

BIC 501.259 

HQIC   497.126 

  

 

Furthermore, an ARIMA (1,2,1) model can be fitted to the oil price series. This model includes one 

autoregressive term and one moving average term, with a second-order differencing to address non-

stationarity. This setup could capture more complex patterns and changes in the data, including trends and 

autocorrelation not accounted for by simple differencing alone. The ARIMA (1,2,1) model fitted to the oil 

price data provides the following insights: the autoregressive term (ar.L1) has a coefficient of 0.4651, with 

a p-value indicating it is statistically significant. This suggests a positive relationship exists between the 

current value and its immediately preceding value after accounting for the difference. 
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TABLE 5 

COVARIANCE 

 

                     coef      std err           z        P>|z|       [0.025         0.975] 

ar.L1            0.4651       0.116       4.021       0.000        0.238           0.692 

ma.L1         -0.9998       17.306       -0.058       0.954      -34.919        32.919 

sigma2        45.0149      777.820       0.058       0.954      -1479.484    1569.514 

Ljung-Box (L1) (Q):                0.20    

Jarque-Bera (JB):                     3.03 

Prob(Q):                                   0.66    

Prob(JB):                          0.22 

Heteroskedasticity (H):            0.38    

Skew:                              -0.41 

Prob(H) (two-sided):                0.02    

Kurtosis:                          3.56 

 

The moving average term (ma.L1) has a coefficient close to -1 but with an extensive confidence interval 

and a high p-value, suggesting that the estimate is not statistically significant. This might indicate over-

differencing or other modeling challenges. 

 

GARCH(1,1) Model 

This research analyzes and compares the GARCH(1,1) and GARCH(1,2) models applied to oil prices. 

The GARCH(1,1) model was used to generate a 10-step ahead forecast, then compared against actual data. 

The forecast accuracy was evaluated using metrics such as Mean Squared Error (MSE) and Mean Absolute 

Error (MAE). While both models fit the data well, the GARCH(1,1) model was more parsimonious. The 

findings indicate that the GARCH(1,1) model effectively forecasts short-term volatility. Furthermore, 

modeling and forecasting volatility is crucial in financial time series analysis, particularly for asset prices 

such as oil. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is widely 

used. The GARCH(1,1) model is the most commonly used specification, with one lag each in the residuals 

and conditional variance. Extended versions, such as GARCH(1,2), include more lags in the conditional 

variance to capture additional volatility dynamics. This study compares the GARCH(1,1) and GARCH(1,2) 

models, performs a 10-step ahead forecast using the GARCH(1,1) model, and evaluates the forecast 

accuracy. The GARCH(1,1) and GARCH(1,2) models were estimated using maximum likelihood 

estimation on the log returns of oil prices. The models are specified as follows: 

 

GARCH(1,1) Model: 

 

σt
2 = ω + α₁ε² (t-1) + β₁σ² (t-1) (3) 

 

GARCH(1,2) Model: 

 

σt
2 = ω + α₁ε² (t-1) + β₁σ² (t-1) + β₂σ² (t-2) (4) 

 

where σt² is the conditional variance, ω is the constant term, α₁ represents the impact of past squared 

residuals, and β₁ and β₂ represent the impact of past variances. The GARCH(1,1) model was used for 

forecasting future variances and returns over a 10-step horizon. 
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Model Comparison 

The estimated coefficients and performance metrics for both models are presented in Table 5. The log-

likelihood values for both models are the same, indicating a similar fit to the data. However, the 

GARCH(1,1) model has lower AIC and BIC values, suggesting a better balance between model fit and 

complexity. 

 

TABLE 6 

MODEL COMPARISON OF GARCH (1,1) AND GARCH(1,2) FOR OIL PRICE VOLATILITY 

 

Model Log-Likelihood AIC BIC 

GARCH(1,1) 81.76 -157.52 -150.60 

GARCH(1,2) 81.76 -155.52 -146.30 

 

GARCH (1,1) Forecast 

The 10-step ahead forecast for the GARCH(1,1) model is shown in Table 6. The table presents the 

forecasted variances and returns for each step ahead based on the estimated GARCH(1,1) model 

parameters. 

 

TABLE 7 

10-STEP AHEAD FORECAST FOR THE GARCH (1,1) 

 

Step Forecasted Variance Forecasted Value 

1.0 0.006156 0.033512 

2.0 0.004663 0.091754 

3.0 0.003852 -0.078008 

4.0 0.003412 0.086667 

5.0 0.003173 0.009931 

6.0 0.003043 0.001578 

7.0 0.002972 -0.051517 

8.0 0.002934 0.065147 

9.0 0.002913 -0.062267 

10.0 0.002902 0.072112 

 

The findings suggest that the GARCH (1,1) model is the preferred choice for modeling the volatility of 

oil prices (Oil price) due to its lower AIC and BIC values despite having the same log-likelihood as the 

GARCH (1,2) model. The additional parameter in the GARCH (1,2) model, representing the second lag of 

past variance, does not significantly improve the model's performance.  

 

FIGURE 7 

COMPARISON OF ACTUAL VS. FORECASTED OIL PRICE 
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The forecast horizon was shortened to match the available actual data. The forecast accuracy of the 

shortened horizon is evaluated using Mean Absolute Deviation (MAD) and Mean Squared Error (MSE) 

metrics. To evaluate the adequacy of the GARCH (1,1) model, this study analyzed the residuals of the 

model along with their autocorrelation (ACF) and partial autocorrelation (PACF) plots. The residuals should 

ideally imitate white noise, signifying that the model has effectively captured the volatility dynamics in the 

data. The ACF and PACF plots help identify any remaining structures in the residuals. 

 

FIGURE 8 

RESIDUALS, ACF, AND PACF PLOTS OF FORECASTED RETURNS 

 

 
 

The 10-step ahead forecast using the GARCH(1,1) model shows a reasonable prediction of future 

variances and returns, although the forecast accuracy metrics (MSE and MAE) suggest some deviation from 

actual values. Future research could explore alternative GARCH specifications or other models to capture 

the volatility dynamics of oil prices more effectively. The GARCH(1,1) model was more parsimonious and 

effective for short-term volatility forecasting. The 10-step ahead forecast was generated, and the forecast 

accuracy was evaluated. While the GARCH(1,1) model performed well, there is room for improvement, 

and future research could investigate more complex models or external factors influencing oil price 

volatility. 

 

TABLE 8 

ACCURACY RESULTS 

 

Metric Value 

Mean Absolute Deviation (MAD) 0.072974 

Mean Squared Error (MSE) 0.006546 
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CONCLUSION 

 

The analysis and forecasting of crude oil price volatility are paramount for practitioners and 

policymakers in the energy sector. The application of GARCH models, as demonstrated in this study, 

provides essential perspectives on the dynamic behavior of oil price volatility. The findings suggest that the 

GARCH(1,1) model, which includes one lag each for the squared residuals and conditional variance, is 

effective for short-term volatility forecasting. Despite the availability of more complex models like 

GARCH(1,2), the GARCH(1,1) model was more parsimonious and provided a comparable fit to the data. 

The study highlighted the significant variations in crude oil prices and their effect on economic stability 

and strategic planning for National Oil Companies (NOCs) and International Oil Corporations (IOCs). The 

recent advancements in hydraulic fracturing have contributed to an increased supply of crude oil, thus 

necessitating more accurate forecasting methodologies to navigate the volatile market conditions. The 

GARCH models, particularly the GARCH(1,1), have shown robustness in capturing these fluctuations, 

enabling stakeholders to manage risks better and make highly informed decisions. 

One of the critical insights from this study is the importance of selecting an appropriate model that 

balances complexity and accuracy. While the GARCH(1,2) model includes additional parameters to account 

for more extended volatility lags, it did not significantly outperform the GARCH(1,1) model regarding 

forecast accuracy. This underscores the need for a judicious approach to model selection, ensuring that 

substantial improvements in predictive performance warrant additional complexity. Moreover, the study’s 

comparison of actual vs. forecasted values over a 10-step horizon indicated that while the GARCH(1,1) 

model provides reasonable predictions, there are still deviations that suggest potential areas for refinement. 

External factors such as macroeconomic indicators, geopolitical events, and high-frequency data may 

enhance the model's predictive power. Additionally, integrating nonlinear dynamics or regime-switching 

components could further improve the model's ability to capture abrupt changes in volatility patterns. The 

findings of this study have several practical implications. For oil producers and traders, understanding the 

volatility structure of crude oil prices is essential for developing effective hedging strategies and optimizing 

production schedules. These models offer policymakers a framework for assessing the potential economic 

effects of oil price disruptions and devising appropriate policy responses.  

Future research could explore the application of hybrid models that combine GARCH with machine 

learning techniques to leverage the strengths of both approaches. These models could provide more accurate 

forecasts by capturing complex patterns and dependencies in the data. Additionally, exploring alternative 

data sources such as social media sentiment and news articles could enrich the model inputs, offering a 

more comprehensive view of market expectations and investor sentiment. Finally, the GARCH(1,1) model 

provides a robust tool for short-term volatility forecasting of crude oil prices. However, there is scope for 

further refinement and enhancement of these models to capture the complexities of the international oil 

market. Continued advancements in modeling techniques and the integration of diverse data sources will 

be crucial in improving the precision and dependability of oil price forecasts, enabling market participants 

to navigate the uncertainties of the energy market more effectively. 
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