Panel Granger Causality Between Financial Development and Economic Growth

Cândida Ferreira
ISEG, UL - Lisbon School of Economics and Management of the Universidade de Lisboa
UECE - Research Unit in Complexity and Economics
REM - Research in Economics and Mathematics

Abstract

This paper uses panel Granger causality estimations with the approaches developed by Nair-Reichert and Weinhold (2001), and Bangake and Eggoh (2011) to analyse the causality relations between all the nine IMF financial development indices, and the real GDP growth considering a sample of 46 countries spread by all continents over the interval 1990-2017. The results revealed the dynamic character of these causality relations. Overall, no significant differences were found when comparing the results obtained for the financial institutions indices with those regarding the financial markets indices. The results confirm the existence of bidirectional causality, although not with the same statistical robustness for all the IMF indices addressing relevant aspects of financial development: access, depth, and efficiency of the financial institutions and markets.

Keywords: panel Granger causality, financial development, IMF financial development indices, financial institutions and markets, economic growth

INTRODUCTION

Over decades, and particularly since the 1990s, the link between the quality of the financial systems and economic growth has been studied and analysed with different methods and empirical tests, but it remains a controversial issue, still deserving further investigation.

A relevant strand of literature used panel data and provided several robust findings demonstrating the relevant contribution of different measures of financial development to economic growth. Several of these empirical studies included as output variables different financial variables and ratios such as total lending, private credit, liquid liabilities, bank loans to the private sector, or stock market capitalization, which were considered representative of the performance of the financial systems and institutions (see for example, Khan and Senhadji, 2000; Wachtel, 2001; and Sahay et al, 2015, for relevant discussion of the appropriate measures of financial sector development and the importance of the chosen econometric models and estimation techniques).

Other studies supported the reverse view, saying that economic growth had a positive effect on financial development (namely, Kar et al., 2011; Song et al., 2021), and many others analyzed the direction of the causality relation between financial development and economic growth providing evidence to support the existence of one direction or bi-direction causality (among others, Levine et al., 2000; Calderón and Liu, 2003; Hassan et al., 2011; Pradhan et al., 2018).

This paper contributes to the literature by estimating panel Granger causality regressions with the approaches developed by Nair-Reichert and Weinhold (2001), Bangake and Eggoh (2011) to analyze the causality relations between all the nine IMF financial development indices and the real GDP growth considering a sample of 46 countries spread by all continents over the interval 1990-2017.

Overall, the results demonstrate the existence of bidirectional causality, although not with the same statistical robustness for all the nine IMF financial development indices. They also confirm the need to use multiple indicators to measure the different aspects of the development of financial markets and institutions. Moreover, no significant differences were found when comparing the results obtained for the financial institutions indices with those regarding the financial markets indices.

This paper is organized as follows: Section 2 provides a brief literature review; Section 3 describes the methodological aspects; Section 4 presents the used data and the results obtained; Section 5 concludes.

BRIEF LITERATURE REVIEW

A large strand of literature is analyzing the relevance of the financial sector's performance to economic growth, particularly after the publication of the renowned King and Levine papers (1993a, 1993b). Many of these studies empirically analysed the financial system's contribution to economic growth with time series, cross-country regressions, and panel estimations, considering different proxies for financial development, and most of them concluded that well-functioning banking institutions and financial markets contributed to economic growth.

King and Levine (1993a) present cross-country evidence that financial development could promote economic growth using data on 80 countries over the period 1960-1989 and considering different measures of financial development, namely liquid liabilities over GDP, bank credit divided by the sum of bank and central bank credit, credit issued to nonfinancial private firms divided by total credit, credit issued to nonfinancial private firms divided by GDP. This empirical analysis was reviewed and extended in King and Levine (1993b) together with the analysis of the theoretical linkages between financial development and growth, corroborating that financial systems and institutions were important for productivity growth and economic development.

Rousseau and Wachtel (1998) used data from five countries (USA, UK, Canada, Sweden, and Norway) for 1871-1929. They concluded that there was a one-way causality between financial development and output. The financial development was measured by the ratio of financial institutions' assets to output and the ratio of the sum of financial institution assets, corporate stocks, and corporate bonds to total financial assets. Levine and Zervos (1998) considered data from 49 countries for the time interval 1976-1990, concluding that stock market liquidity and banking development positively predicted growth, capital accumulation, and productivity improvements when included in regression estimations.

Demirguç-Kunt and Levine (1999), using data from 150 countries spanning the 1990s, also concluded that wealthy countries had more developed financial systems, and analysed this development in terms of the size and efficiency of the financial sector, measured by the assets, liabilities, overhead costs, and interest rate margins.

Greenwood et al. $(2010,2013)$ also empirically analyzed the effects of financial development on economic growth, using a state cost verification model, and concluding that as financial sector efficiency rose, financial resources got redirected from the less productive firms to their more productive peers.

Other authors analyzed how financial systems differed worldwide, comparing those that were mostly bank-based with those that were primarily market-based. Levine (1997) discussed many of these studies, providing a cross-country examination of which view of financial structure was more consistent with the data. The main conclusions indicated that although financial development was robustly linked with economic growth, there was no robust support for either the bank-based or the market-based view.

Different conclusions were obtained by Gaytan and Rancière (2004), pointing out that, on the one hand, credit to the private sector and bank deposits contributed negatively to growth but, on the other hand, stock market size, liquidity, and investment contributed positively to economic development. The same kind of conclusions were obtained by Ayadi et al. (2015) using a sample of northern and southern Mediterranean countries for the 1985-2009 period: these authors confirmed that there were deficiencies in bank credit
allocation in the considered countries as credit to the private sector and bank deposits were negatively associated with economic growth; however, on the stock market side, their results indicated that stock market size and liquidity did contribute to growth. Also, Cournède and Denk (2015), focusing on advanced countries, more precisely on OECD countries and G20 countries between 1970 and 2011, found that intermediated credit had a negative link with GDP growth and that stock market size had a positive one.

Simultaneously, another strand of the literature analyzed the potential causality relations between financial development and economic growth, considering that not only financial development could promote economic growth but also that increased growth could contribute to financial development.

Demetriades and Hussein (1996) analyzed some empirical works addressing the issue of causality between financial development and economic growth, and using time series techniques, they conducted causality tests between financial development (measured by the ratio bank deposit liabilities to GDP and the ratio of bank claims on the private sector to GDP) and real GDP using data from 16 not highly developed countries. Their results provided little support to the view that finance was a leading sector in the process of economic development, but they found considerable evidence of bi-directionality and some relevant evidence of reverse causation, meaning that it was finance that followed economic growth.

Berthelemy and Varoudakis (1996) discussed a theoretical endogenous growth model. They tested it with data from 95 countries, demonstrating that causality between financial development and growth ran in both ways, since growth in the real sector caused the financial market to expand, thereby increasing banking competition and efficiency. In return, the development of the banking sector raised the net yield on savings and enhanced capital accumulation and growth. The same kind of conclusions were obtained by Luintel and Khan (1999), who tested the long-run relationship between financial development (measured by the ratio of a bank's total deposit liabilities to one period lagged nominal GDP) and economic growth, using a sample of 10 countries and a data set that had an average period of 38 years. They found bi-directional causality between financial development and economic growth.

Levine et al. (2000) constructed a new dataset and, using different measures of financial intermediation, applied traditional cross-section, instrumental-variable procedures as well as dynamic panel techniques, considering a panel dataset of 74 countries, where the data were averaged over each of the seven 5 -year intervals composing the period 1960-1995 and concluding that the development of financial intermediaries exerted an important causal impact on growth.

Calderón and Liu (2003) studied the causality between financial development and growth employing pooled data from 109 developing and industrial countries from 1960 to 1994 and found that financial development generally leaded to economic growth, as well as that the Granger causality from financial development to economic growth and the Granger causality from economic growth to financial development coexisted.

Bangake and Eggoh (2011) used panel methods on a data set of 71 developed and developing countries from 1960-2004 to assess the causal relationship between financial development and economic growth, confirming the existence of bidirectional causality between finance and growth. In addition, they concluded that while in low-and middle-income countries, there was no supportive evidence of short-run causality between financial development and economic growth, in high-income countries, economic growth significantly affected financial development.

Hassan et al. (2011) also empirically analyzed how financial development linked to economic growth by applying Granger causality tests for a sample period between 1980 and 2007 to different groups of countries: low- and middle-income countries in different geographic regions and two groups of high-income countries (OECD and non-OECD countries). They found a causal relationship between financial development and economic growth in developing countries. However, the short-term multivariate analysis provided mixed results: a two-way Granger causality between finance and growth for most of the considered regions and a one-way Granger causality from growth to finance for the two poorest regions. The same kind of conclusions were obtained by Kahouli (2017), testing the Granger causality between economic growth, energy consumption, and financial development in six South Mediterranean countries over the 1995-2015 period, and presenting mixed results for individual countries, as the causal relationships diverged essentially in intensity, and the rates of adjustment varied from country to country.

Pradhan et al. (2018) used panel cointegration and causality tests to analyze the interactions between innovation, financial development, and economic growth in 49 European countries between 1961 and 2014. They found many results, demonstrating the existence of unidirectional or bidirectional causal links between the variables in several cases. For example, they found evidence of unidirectional causality from financial development to per capita economic growth, particularly when banking sector development was linked to innovation and per capita economic growth. They also found evidence of bidirectional causality between financial development and economic growth, particularly when both stock market development and overall financial development were considered jointly with innovation and economic growth.

Yang (2019) tested the impact of financial systems on economic growth in cross-sectional and time series frameworks considering three groups of economies: trapped middle-income economies, graduated middle-income economies, and high-income economies from 1970 to 2016. The main conclusions confirmed that financial development contributed significantly to economic growth and the existence of Granger causality between equity market development and economic growth for all three groups of economies, although some stronger and some weaker. Moreover, there was a reverse causality between economic growth and equity market development in high-income economies, which was not detected in the other economies.

METHODOLOGY

The paper considers the traditional Granger causality test (Granger, 1969) and the approaches developed by Nair-Reichert and Weinhold (2001), and Bangake and Eggoh (2011) to analyze the existence of causality relationships among variables in panels.

According to the Granger causality concept, correlation does not imply causality since the cause cannot come after its effect. More precisely, a variable, x, is said to Granger cause another variable y, if the current value of this variable $y\left(y_{t}\right)$ significantly depends on the past values of the variable x, that is, x_{t-1}, x_{t-2}, \ldots (but not on its current value, x_{t}).

The starting point of the methodology is then the estimation of a general linear panel Granger causality model with two equations:
$y_{i, t}=\alpha_{1}+\sum_{k=1}^{K} \gamma_{1, i, k} y_{i, t-k}+\sum_{k=1}^{K} \beta_{1, i, k} x_{i, t-k}+\varepsilon_{1, i, t}$
$x_{i, t}=\alpha_{2}+\sum_{k=1}^{K} \gamma_{2, i, k} x_{i, t-k}+\sum_{k=1}^{K} \beta_{2, i, k} y_{i, t-k}+\varepsilon_{2, i, t}$
where $i=1, \ldots, N$ are the cross units; $t=1, \ldots, T$ are the periods; $\alpha_{1,2}$ are the intercepts; $k=1, \ldots K$ are the considered lags; $\varepsilon_{l, 2}$ are the error terms (including not only the disturbance terms, but also the individual cross-unit specific effects).

The test of Granger noncausality considers the null hypothesis $H_{0}: \beta_{i}=0, \forall i=1, \ldots, N$.
If H_{0} is rejected, it is possible to conclude that causality exists. More precisely, the strength of the Granger causality relations in each estimated equation can be evaluated using Wald tests for each of the β_{i} that are obtained for the considered time lags $(t-1, t-2, \ldots)$. If the Wald test indicates that H_{0} is rejected, causality from x to y (or from y to x) exists.

DATA AND EMPIRICAL RESULTS

Data

The paper considers the interval 1990-2017. It includes annual data for 46 countries covering all continents: Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Ireland, Italy, Japan, Republic of Korea, Latvia, Lithuania, Luxembourg, Malta, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovak Republic, Slovenia, South Africa, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States.

All the data used in the estimations were sourced from the IMF databases. Economic growth is measured by the natural logarithm of the real Gross Domestic Product. Financial development is represented by the nine IMF financial development indices that measure the depth, access, and efficiency of the financial markets and institutions, as presented in Annex I and very well explained in Sahay et al. (2015) and in Svirydzenka (2016).

Before proceeding with the causality estimations, the stationarity of the considered series is analyzed, using two of the most recommended panel unit roots tests: the Levin-Lin-Chu tests (Levin et al, 2002), and Fisher-type (ADF) test (Choi, 2001; Maddala and Wu, 1999). The results obtained are reported in Annex II and reveal that some of the variables are not stationary in their levels, but all of them are stationary in their first differences.

Further, the cointegration between each of the nine IMF financial development indices and the natural logarithm of the real GDP is analyzed with the application of the Westerlund (2007) panel cointegration test, which is very flexible and works well in heterogeneous and/or relatively small panels, allowing for dependence both between and within the cross-panel units. The results obtained for the four Westerlund test statistics are presented in Annex III and provide clear support to accept the existence of cointegration between the real GDP growth and all the nine IMF financial development indices.

Results Obtained With the Panel Granger Causality Estimations

Following the methodology presented in the previous section, the panel causality estimations analyze the causality from financial development to economic growth (represented by Equation 1) and the causality from economic growth to financial development (Equation 2).

Both equations are first estimated with panel fixed effect estimations, which may not be fully appropriate since fixed-effects models cannot deal with endogenous regressors, and endogeneity may be an important concern in the context of the considered model. To deal with this eventual limitation, both equations are also estimated with GMM (Generalized Method of Moments) dynamic one-step and two-step estimations, following Arellano and Bond (1991) and Blundell and Bond (1998) as GMM estimations can not only address the endogeneity problems (although only for weak endogeneity and not for full endogeneity, as explained in Bond, 2002) but also reduce the potential bias of the estimated coefficients.

The use of annual data does not recommend the consideration of many lags (k) in the estimations, therefore, only two models were estimated: Model 1 considering only one lag ($\mathrm{k}=1$) and Model 2 including two lags ($\mathrm{k}=2$).

The results of the panel Granger causality estimations are presented in Annex IV and are statistically validated overall. The R-squared of the fixed effects estimations is acceptable for panel estimations; in almost all situations, the Arellano and Bond (1991) tests reject the null hypothesis of no autocorrelation of the first order and do not reject the hypothesis of no autocorrelation of the second order; moreover, with few exceptions, the Sargan and Hansen statistics, as well as the Wald-test results, validate the instruments.

Table 1 summarises the causality results obtained with fixed effects, GMM one-step GMM, and twostep estimations, providing evidence that in almost all situations, the Wald test results validate the instruments of both models, and very particularly in the GMM estimations.

Overall, the results obtained with Model 1 are corroborated by the results corresponding to the first lag of Model 2 (although not always by the results corresponding to the second lag) and they allow the following conclusions regarding the causality relations between the real GDP growth and the nine IMF financial development indices:

1) There is clear evidence that, with few exceptions, the IMF financial development indices Granger cause real GDP growth, (with the main exception of the results regarding the Financial Institutions Access Index).
2) The results regarding the causality from real GDP growth to financial development indices are not statistically as strong nor unanimous. Nevertheless, there is still robust evidence that the real GDP growth Granger causes the Financial Institutions Access Index, the Financial Markets Efficiency Index, and to some extent, also the Financial Institutions Efficiency Index, and the Financial Institutions Index.
TABLE 1
SUMMARY OF THE PANEL GRANGER CAUSALITY ESTIMATIONS

Causality: Financial Development \rightarrow GDP							Causality: GDP \rightarrow Financial Development						
Expl. Variable	Model 1			Model 2			Expl. Variable	Model 1			Model 2		
	FE	GMM1	GMM2	FE	GMM1	GMM2		FE	GMM1	GMM2	FE	GMM1	GMM2
Financial Development Index t-1	-	$\underset{* * *}{+}$	$\underset{* * *}{+}$	+	$\underset{* * *}{+}$	$\underset{* * *}{+}$	GDP t-1	$\underset{* * *}{+}$	-	$\overline{* *}$			
Financial Development Index t-2							GDP t-2				$\underset{* *}{+}$	+	$\stackrel{-}{* * *}$
WALD TEST p-values $\left(\beta_{t-1}=0\right)$ $\left(\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{t-1}=b_{t-2}=0\right)$	0.910	0.000	0.000	$\begin{aligned} & 0.009 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values $\begin{aligned} & \left(\beta_{\mathrm{t}-1}=0\right) \\ & \left(\beta_{\mathrm{t}-2}=0\right) \\ & \left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}-}\right. \\ & 2=0) \end{aligned}$	0.003	0.676	0.050	$\begin{aligned} & 0.056 \\ & 0.002 \\ & 0.000 \end{aligned}$	$\begin{gathered} 0.805 \\ 0.544 \\ 0.82 \end{gathered}$	$\begin{aligned} & 0.275 \\ & 0.020 \\ & 0.055 \end{aligned}$

Financial Institutions Access Index t-1	-	-	$\stackrel{-}{* * *}$	-		-	GDP t-1	$\begin{gathered} + \\ * * * \end{gathered}$	$\begin{gathered} + \\ * * * \end{gathered}$	$\begin{gathered} + \\ * * * \end{gathered}$	$\stackrel{+}{+}+$		
Financial Institutions Access Index t-2					-	$\stackrel{-}{* *}$	GDP t-2					+	$+\underset{* *}{+}$
WALD TEST p -values ($\beta_{\mathrm{t}-1}=0$) ($\beta_{\mathrm{t}-2}=0$) $\left(\beta_{t-1}=b_{t-2}=0\right)$	0.443	0.023	0.000	$\begin{aligned} & 0.221 \\ & 0.464 \\ & 0.313 \end{aligned}$	$\begin{aligned} & 0.984 \\ & 0.654 \\ & 0.313 \end{aligned}$	$\begin{aligned} & 0.998 \\ & 0.012 \\ & 0.313 \end{aligned}$	WALD TEST p -values $\left(\beta_{t-1}=0\right)$ $\left(\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}}\right.$ ${ }_{2}=0$)	0.000	0.000	0.000	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.136 \\ & 0.276 \\ & 0.189 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$

Financial Institutions Depth Index t-1	-	$\stackrel{+}{* *}$	$\stackrel{+}{+* *}$		$\stackrel{+}{+* *}$	$\stackrel{+}{* *}$	GDP t-1	-	***	***			
Financial Institutions Depth Index t-2				***			GDP t-2				$\begin{gathered} + \\ * * * \end{gathered}$	$\underset{* *}{+}$	$+$
WALD TEST p-values $\left(\beta_{t-1}=0\right)$ ($\left.\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}-2}=0\right)$	0.202	0.000	0.000	$\begin{aligned} & 0.002 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values $\left(\beta_{t-1}=0\right)$ $\left(\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}}\right.$ $\left.{ }_{2}=0\right)$	0.469	0.012	0.000	$\begin{aligned} & 0.016 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$
Financial Institutions Efficiency Index t-1	$\stackrel{+}{+* *}$	$\stackrel{+}{+*} \underset{* *}{+}$	$\stackrel{+}{+* *}$	$\stackrel{+}{+* *}$	$\stackrel{+}{+* *}$	$\stackrel{+}{+* *}$	GDP t-1	+	+	$+$	$+$	+	$\stackrel{+}{+}+$
Financial Institutions Efficiency Index t-2							GDP t-2						
WALD TEST p-values ($\beta_{\mathrm{t}-1}=0$) ($\left.\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{t-1}=b_{t-2}=0\right)$	0.000	0.000	0.000	$\begin{aligned} & 0.001 \\ & 0.198 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values $\left(\beta_{t-1}=0\right)$ $\left(\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{t-1}=b_{t}\right.$ ${ }_{2}=0$)	0.209	0.790	0.093	$\begin{aligned} & 0.034 \\ & 0.630 \\ & 0.099 \end{aligned}$	$\begin{aligned} & 0.113 \\ & 0.111 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$

40 Journal of Accounting and Finance Vol. 23(6) 2023

Financial Institutions Index t-1	+	$\begin{gathered} + \\ * * * \end{gathered}$	$\underset{* * *}{+}$		$\stackrel{+}{+* *}$	$\underset{* *}{+}$	GDP t-1	$\underset{* * *}{+}$	+	$+$		+	$\underset{* * *}{+}$
Financial Institutions Index t-2				${ }^{-}$*			GDP t-2				$+$		
WALD TEST p-values ($\beta_{\mathrm{t}-1}=0$) ($\left.\beta_{\mathrm{t}-2}=0\right)$ ($\left.\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}-2}=0\right)$	0.474	0.009	0.000	$\begin{aligned} & 0.070 \\ & 0.028 \\ & 0.090 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values $\left(\beta_{t-1}=0\right)$ $\left(\beta_{t-2}=0\right)$ $\left(\beta_{t-1}=b_{t-}\right.$ ${ }_{2}=0$)	0.009	0.863	0.015	$\begin{aligned} & 0.069 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.483 \\ & 0.170 \\ & 0.214 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$
Financial Markets Access Index t-1	+	$\stackrel{+}{* *}$	$\stackrel{+}{+* *}$	$\stackrel{+}{+* *}$	$\stackrel{+}{+* *}$	$\stackrel{+}{* *}$	GDP t-1	$\begin{aligned} & + \\ & * * \end{aligned}$	-	$\stackrel{-}{*} * *_{*}^{*}$	$\begin{aligned} & + \\ & * \end{aligned}$	+	***
Financial Markets Access Index t-2							GDP t-2						
WALD TEST p-values $\left(\beta_{t-1}=0\right)$ ($\left.\beta_{\mathrm{t}-2}=0\right)$ ($\left.\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}-2}=0\right)$	0.227	0.000	0.000	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values ($\beta_{\mathrm{t}-1}=0$) $\left(\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}}\right.$ ${ }_{2}=0$)	0.024	0.330	0.000	$\begin{aligned} & 0.065 \\ & 0.319 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 0.458 \\ & 0.909 \\ & 0.755 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.362 \\ & 0.000 \end{aligned}$

Financial Markets Depth Index $\mathrm{t}-1$	+	$\stackrel{+}{* *}$	$\stackrel{+}{+* *}$		$\stackrel{+}{+* *}$	$\underset{* * *}{+}$	GDP t-1	-	***	$\overline{-}$		***	***
Financial Markets Depth Index t-2				*			GDP t-2				$+$		
WALD TEST p-values $\left(\beta_{t-1}=0\right)$ ($\left.\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}-2}=0\right)$	0.503	0.000	0.000	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values $\begin{aligned} & \left(\beta_{\mathrm{t}-1}=0\right) \\ & \left(\beta_{\mathrm{t}-2}=0\right) \\ & \left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}-}\right. \\ & 2=0) \end{aligned}$	0.951	0.000	0.000	$\begin{aligned} & 0.106 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.029 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$
Financial Markets Efficiency Index t-1	**	***	$\stackrel{-}{* * *}$	$\stackrel{-}{* * *}$			GDP t-1	$+$	$\begin{aligned} & \hline+ \\ & \text { + } \end{aligned}$	$\begin{gathered} + \\ * * * \end{gathered}$	$+\underset{*}{+}$	$\begin{aligned} & + \\ & + \end{aligned}$	$+$
Financial Markets Efficiency Index t-2					$\stackrel{+}{+* *}$	$\stackrel{+}{* * *}$	GDP t-2						
WALD TEST p -values ($\beta_{\mathrm{t}-1}=0$) ($\beta_{\mathrm{t}-2}=0$) $\left(\beta_{t-1}=b_{t-2}=0\right)$	0.027	0.303	0.000	$\begin{aligned} & 0.002 \\ & 0.155 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	WALD TEST p-values ($\beta_{\mathrm{t}-1}=0$) ($\left.\beta_{\mathrm{t}-2}=0\right)$ $\left(\beta_{\mathrm{t}-1}=\mathrm{b}_{\mathrm{t}}\right.$ ${ }_{2}=0$)	0.054	0.066	0.000	$\begin{aligned} & 0.038 \\ & 0.835 \\ & 0.093 \end{aligned}$	$\begin{aligned} & 0.023 \\ & 0.279 \\ & 0.069 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$

42 Journal of Accounting and Finance Vol. 23(6) 2023

Financial Markets Index t-1	-	$\stackrel{+}{* * *}$	$\underset{* * *}{+}$	$\stackrel{+}{*}$	$\underset{* * *}{+}$	$\underset{* * *}{+}$	GDP t-1	$\stackrel{+}{+*}$	$\stackrel{-}{* * *}$	***	+	-	${ }_{*}^{*}$
Financial Markets Index t-2							GDP t-2						
WALD TEST p -values ($\beta_{\mathrm{t}-1}=0$) ($\beta_{\mathrm{t}-2}=0$) $\left(\beta_{t-1}=b_{t-2}=0\right)$	0.550	0.303	0.000	$\begin{aligned} & 0.015 \\ & 0.000 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & \hline \text { WALD } \\ & \text { TEST } \\ & \text { p-values } \\ & \left(\beta_{t-1}=0\right) \\ & \left(\beta_{-2-2}=0\right) \\ & \left(\beta_{-1-1}=b_{t-}\right. \\ & 2=0) \\ & \hline \end{aligned}$	0.046	0.529	0.000	$\begin{aligned} & 0.153 \\ & 0.219 \\ & 0.054 \end{aligned}$	$\begin{aligned} & 0.524 \\ & 0.889 \\ & 0.815 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.168 \\ & 0.000 \end{aligned}$

CONCLUDING REMARKS

This paper contributes to the literature using the traditional Granger causality tests, following the approaches developed by Nair-Reichert and Weinhold (2001), and Bangake and Eggoh (2011to analyse the causality relations between all the nine IMF financial development indices and the real GDP growth, considering a panel of 46 countries covering all continents over the interval 1990-2017.

The results obtained point to the existence of bi-directional causality, although not statistically with the same robustness for all the nine indices, confirming the potential existence of mixed results that were already found, for example, in Kar et al (2011), Kahouli (2017), and Pradhan et al. (2018). Nevertheless, the results of this paper allow the following conclusions:

- In almost all situations, the Wald test obtained with the traditional panel Granger causality tests reveal the adequacy of the considered instruments and the presence of causality relations. Moreover, the results are more robust when using GMM estimations confirming the dynamic character of the tested causality relations, considering the capacity of this kind of estimation to reduce the potential bias of the estimated coefficients and well addressing the eventual endogeneity problems.
- With few exceptions, the results obtained with GMM estimations confirm the causality running from the IMF financial development indices to GDP growth and, although not with the same statistical robustness, also running from GDP growth to the financial development indices.
Overall, the results obtained in this paper confirm the relevance of the relationships between financial development and economic growth, supporting the statements of Svirydzenka (2016) in regard to the need to use multiple indicators to measure the different aspects of development, namely considering the access, depth, and efficiency of the financial markets and institutions. Also, the results obtained support the main results of Levine (1997) but are not fully in line with the conclusions of some more recent works, such as Gaytan and Rancière (2004), Ayadi et al. (2013), and Cournède and Denk (2015), as this paper does not reveal the existence of significant differences between the results obtained for the financial institutions indices versus the results regarding the financial markets indices.

Further research is still needed in this field due to the complex and dynamic causality relations between the different aspects of financial development and economic growth, considering the diversity of the financial systems across countries and their different levels of development.

ACKNOWLEDGEMENT

The author acknowledges financial support from FCT - Fundação para a Ciência e Tecnologia (Portugal), national funding through research grant UIDB/05069/2020.

REFERENCES

Arellano, M., \& Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Review of Economic Studies, 58, $277-297$.
Ayadi, R., Arbak, E., Naceur, S.B., \& De Groen, W.P. (2015). Financial Development, Bank Efficiency, and Economic Growth Across the Mediterranean. In R. Ayadi, M. Dabrowski, \& L. De Wulf (Eds.), Economic and Social Development of the Southern and Eastern Mediterranean Countries. Cham: Springer. https://doi.org/10.1007/978-3-319-11122-3_14
Bangake, C., \& Eggoh, J. (2011). Further evidence on finance-growth causality: A panel data analysis. Economic Systems, 35, 176-188.
Berthelemy, J.C., \& Varoudakis, A. (1996). Economic growth, convergence clubs, and the role of financial development. Oxford Economic Papers, 48(2), 300-328.
Blundell, R., \& Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87, 115-143.

Bond, S. (2002). Dynamic Panel Data Models: A Guide to Micro Data Methods and Practice. Working Paper No. 09/02. London: Institute for Fiscal Studies.
Calderón, C., \& Liu, L. (2003). The direction of causality between financial development and economic growth. Journal of Development Economics, 72, 321-334.
Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20, 249-272.
Cournède, B., \& Denk, O. (2015). Finance and Economic Growth in OECD and G20 Countries. OECD Economics Department Working Papers No. 1223.
Demetriades, P., \& Hussein, K. (1996). Does financial development cause economic growth? Time-series evidence from 16 countries. Journal of Development Economic, 51, 387-411.
Demirguç-Kunt, A., \& Levine, R. (1999). Bank-Based and Market-Based Financial Systems: Cross Country Comparisons. World Bank Policy Research Working Paper, No 2143.
Gaytan, A., \& Rancière, R. (2004) Wealth, Financial Intermediation and Growth. Departments of Economics and Business, Universitat Pompeu Fabra, Economics Working Papers No 851.
Granger, C.W.J. (1969). Investigating Causal Relations by Econometric Models and Cross Spectral Methods. Econometrica, 37, 424-438.
Greenwood, J., Sanchez, J.M., \& Wang, C. (2013). Quantifying the impact of financial development on economic development. Review of Economic Dynamics, 16, 194-215.
Greenwood, J., Wang, C., \& Sanchez, J.M. (2010). Financing development: The role of information costs. American Economic Review, 100, 1875-1891.
Hassan, M., Sanchez, B., \& Yu, J. (2011). Financial development and economic growth: New evidence from panel data. The Quarterly Review of Economics and Finance, 51, 88-104.
Kahouli, B. (2017). The short and long run causality relationship among economic growth, energy consumption and financial development: Evidence from South Mediterranean Countries (SMCs). Energy Economics, 68, 19-30.
Kar, M., Nazlioglu, S., \& Agir, H. (2011). Financial development and economic growth nexus in the MENA countries: Bootstrap panel granger causality analysis. Economic Modelling, 28, 685-693.
Khan, M.S., \& Senhadji, A. (2000). Financial Development and Economic Growth: An Overview. IMF Working Paper No 209.
King, R., \& Levine, R. (1993a). Finance and Growth: Schumpeter Might Be Right. Quarterly Journal of Economics, 108, 717-737.
King, R., \& Levine, R. (1993b). Finance, entrepreneurship and growth: Theory and evidence. Journal of Monetary Economics, 32, 513-542.
Levin, A., Lin, C.F., \& Chu, C.S. (2002). Unit Root Tests in Panel Data: Asymptotic and Finite Sample Properties. Journal of Econometrics, 108, 1-24.
Levine, R. (1997). Financial Development and economic growth: Views and agenda. Journal of Economic Literature, 35, 688-726.
Levine, R., \& Zervos, S. (1998). Stock markets, banks and economic growth. American Economic Review, 88, 537-558.
Levine, R., Loayza, N., \& Beck, T. (2000). Financial intermediation and growth: Causality and causes. Journal of Monetary Economics, 46, 31-77.
Luintel, K.B., \& Khan, M. (1999). A Quantitative Reassessment of the Finance-growth Nexus: Evidence from a Multivariate VAR. Journal of Development Economics, 60, 381-405.
Maddala, G.S., \& Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61, 631-52.
Nair-Reichert, U., \& Weinhold, D. (2001). Causality tests for cross-country panels: A look at FDI and economic growth in less developed countries. Oxford Bulletin of Economics and Statistics, 63, 153-171.
Pradhan, R.P., Arvin, M.B., \& Bahmani, S. (2018). Are innovation and financial development causative factors in economic growth? Evidence from a panel granger causality test. Technological Forecasting \& Social Change, 132, 130-142.

Rousseau, P.L., \& Wachtel, P. (1998). Financial Intermediation and Economic Performance: Historical Evidence from Five Industrialized Countries. Journal of Money, Credit and Banking, 30, 657678.

Sahay, R., Cihak, M., N'Diaye, P., Barajas, A., Bi, R., Ayala, D., . . Yousefi, S.R. (2015). Rethinking Financial Deepening: Stability and Growth in Emerging Markets. IMF Staff Discussion Note, SDN/15/08.
Song C.-Q., Chang C.-P., \& Gong Q. (2021). Economic growth, corruption, and financial development. Global evidence. Economic Modelling, 94, 822-830.
Svirydzenka, K. (2016). Introducing a New Broad-based Index of Financial Development. IMF Working Paper, WP/16/5.
Wachtel, P. (2001). Growth and finance: What do we know and how do we know it? International Finance, 4, 353-362.
Westerlund, J. (2007). Testing for Error Correction in Panel Data. Oxford Bulletin of Economics and Statistics, 69, 709-748.
Yang, F. (2019). The impact of financial development on economic growth in middle-income countries. Journal of International Financial Markets, Institutions \& Money, 59, 74-89.

APPENDIX 1: CONSTRUCTION OF THE FINANCIAL DEVELOPMENT INDEX

	FINANCIAL INSTITUTIONS	FINANCIAL MARKETS
DEPTH	1. Private-sector credit (\% of GDP) 2. Pension fund assets (\% of GDP) 3. Mutual fund assets (\% of GDP) 4. Insurance premiums, life and non- life (\% of GDP)	1. Stock market capitalization to GDP 2. Stocks traded to GDP 3. International debt securities government (\% of GDP) 4. Total debt securities of nonfinancial corporations (\% of GDP) 5. Total debt securities of financial corporatior
ACCESS	of 1. Branches (commercial banks) per 100,000 adults 2. ATMs per 100,000 adults	1. Percent of market capitalization outside of top 10 largest companies
EFFICIENCY	2. Total number of issuers of debt (domestic and external, nonfinancial corporations, and financial corporations)	
	1. Net interest margin 2. Lending-deposits spread 3. Non-interest income to total income 4. Overhead costs to total assets market turnover ratio (stocks traded/ 5. Return on assets 6. Return on equity	capitalization)

Source: Sahay, R., Cihak, M., N’Diaye, P., Barajas, A., Bi, R., Ayala, D., Gao, Y., Kyobe, A., Nguyen, L., Saborowski, C., Svirydzenka, K. and Yousefi, S.R. (2015) Rethinking Financial Deepening: Stability and Growth in Emerging Markets, IMF Staff Discussion Note, SDN/15/08, pp. 34.
APPENDIX 2: RESULTS OBTAINED WITH PANEL UNIT ROOT TESTS (p-VALUES)

	Financial Development Index	Financial Institutions Access Index	Financial Institutions Depth Index	Financial Institutions Efficiency Index	Financial Institutions Index	Markets Access Index	Financial Markets Depth Index	Financial Markets Efficiency Index	Financial Markets Index	Ln GDP
Levin Li Levels Differences	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.5006 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0039 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0 . \\ & 9543 \\ & 0.0000 \end{aligned}$					
Fisher (P statistic) Levels Differences	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0001 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0488 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.0000 \end{aligned}$

Source: Author's calculations using STATA statistical software. Data were sourced from the IMF databases.
APPENDIX 3: RESULTS OBTAINED WITH WESTERLUND PANEL COINTEGRATION TESTS: COEFFICIENTS OF THE COINTEGRATION BETWEEN THE NATURAL LOGARITHM OF THE REAL GDP AND THE NINE IMF FINANCIAL DEVELOPMENT INDICES

Financial Development Index Financial Institutions Access Index Financial Institutions Depth Index Financial Institutions Efficiency Index Financial Institutions Index Markets Access Index Financial Markets Depth Index Financial Markets Efficiency Index Gt $-3.003^{* * *}$ $-2.670^{* * *}$ $-2.182^{* * *}$ $-3.844^{* * *}$ $-3.370^{* * *}$ $-2.788^{* * *}$ $-2.346^{* * *}$ $-3.453^{* * *}$ Index
Ga
$-12.184^{* * *}$

APPENDIX 4: RESULTS OBTAINED WITH PANEL GRANGER CAUSALITY ESTIMATIONS

Financial Development Index \rightarrow GDP													GDP \rightarrow Financial Development Index													
	Fixed effects				GMM one-step system				GMM two-step system					Fixed effects				GMM one-step systen				GMM two-step system				
	Model 1		Model 2		Model 1		Model 2		Model 1		Model 2			Model 1		Model 2		Model 1		Model 2		Model 1		Model 2		
	Coef.	P>\|z		Coef.	P> \mid \| \mid	Coef.	$\mathrm{P}>\|2\|$	Coef.	$\mathrm{P}>\|2\|$	Coef.	P> $\backslash 2 \mid$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$		Coef.	P> \mid z \mid	Coef.	P> \mid z \mid	Coef.	P> \backslash \| \mid	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	P> \mid \| \mid	Coef.	$\mathrm{P}>\|2\|$
$\mathrm{GDP}_{\text {t-1 }}$. 00352	0.000	. 03341	0.000	. 00544	0.000	. 00495	0.000	. 00547	0.000	. 00501	0.000	Financial Development Index ${ }_{\text {t. }}$. 7948	0.000	. 8441	0.000	1.024	0.000	1.080	0.577	1.022	0.000	1.085	0.000	
$\mathrm{GDP}_{\mathrm{t}_{2}}$			-.0005	0.100			-. 0027	0.000			-. 0027	0.000	Financial Development Index ${ }^{2}$.			-. 0350	0.170			-.049	0.577			-.056	0.000	
Financial Development Index ${ }_{t-1}$	-.0014	0.910	. 06226	0.009	. 08941	0.000	. 52975	0.000	. 08944	0.000	. 52429	0.000	$\mathrm{GDP}_{\mathrm{t}-1}$. 0011	0.003	. 0007	0.056	-.0003	0.676	-.0002	0.805	-.0003	0.050	-.0001	0.275	
Financial Development Index ${ }^{2} 2$			-. 0896	0.000			-. 4767	0.000			-.4726.	0.000	$\mathrm{GDP}_{\mathrm{t} \cdot 2}$. 0012	0.002			. 0005	0.543			-.0004	0.000	
R-squared	0.1568		0.1417										R-squared	0.9576		0.9649										
$\begin{aligned} & \hline \operatorname{ABAR}(1) \mathrm{Z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{array}{\|l\|} \hline-10.78 \\ 0.000 \\ \hline \end{array}$		$\begin{aligned} & \hline-9.43 \\ & 0.000 \\ & \hline \end{aligned}$		$\begin{gathered} \hline-3.79 \\ 0.000 \\ \hline \end{gathered}$		$\begin{aligned} & \hline-3.88 \\ & 0.000 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{ABAR}(1) \mathrm{z} \\ & \mathrm{p} \text {-value } \end{aligned}$					$\begin{array}{\|c\|} \hline-11.21 \\ 0.000 \\ \hline \end{array}$		$\begin{aligned} & \hline-5.67 \\ & 0.000 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-5.48 \\ & 0.000 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-5.57 \\ & 0.000 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{AB} \operatorname{AR}(2) \mathrm{z} \\ & \mathrm{p} \text { - value } \end{aligned}$					$\begin{aligned} & -0.91 \\ & 0.365 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 0.93 \\ 0.354 \\ \hline \end{array}$		$\begin{array}{\|l} \hline-0.45 \\ 0.649 \\ \hline \end{array}$		$\begin{aligned} & \hline 0.66 \\ & 0.509 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{AB} \operatorname{AR}(2) \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{aligned} & -2.12 \\ & 0.034 \\ & \hline \end{aligned}$		$\begin{array}{r} \hline-1.23 \\ 0.219 \\ \hline \end{array}$		$\begin{array}{\|c} \hline-2.46 \\ 0.014 \\ \hline \end{array}$		$\begin{array}{r} \hline-1.61 \\ 0.108 \\ \hline \end{array}$		
Sargan test chi2 Prob > chi2					$\begin{aligned} & 582.08 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline 404.10 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline 582.08 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 404.10 \\ & 0.000 \end{aligned}$		Sargan test chi2 Prob $>$ chi2					$\begin{aligned} & 42.71 \\ & 0.007 \end{aligned}$		$\begin{aligned} & 102.46 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline 42.71 \\ & 0.007 \end{aligned}$		$\begin{aligned} & 102.46 \\ & 0.000 \end{aligned}$		
Hansen test chi2 Prob > chi2									$\begin{aligned} & \hline 45.52 \\ & 0.615 \end{aligned}$		$\begin{aligned} & \hline 43.69 \\ & 0.527 \end{aligned}$		Hansen test chi2 Prob > chi2									$\begin{gathered} \hline 45.03 \\ 0.635 \end{gathered}$		$\begin{aligned} & \hline 44.99 \\ & 0.472 \end{aligned}$		
WALD TEST $\left(\beta_{\mathrm{rl}}=0\right)$ chi2 Prob>chi2	$\begin{array}{\|l\|} \hline 0.01 \\ 0.9097 \end{array}$		$\begin{aligned} & 6.82 \\ & 0.0091 \end{aligned}$		$\begin{aligned} & 18.97 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 44.43 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 1783.87 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 1262.80 \\ & 0.0000 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { WALD } \\ \text { TEST } \\ \left(\beta_{\mathrm{rl}}=0\right) \text { chi2 } 2 \\ \text { Prob }>\text { chi2 } \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ 0.0029 \end{array}$		$\begin{aligned} & 3.65 \\ & 0.0562 \end{aligned}$		$\begin{aligned} & 0.18 \\ & 0.6757 \end{aligned}$		$\begin{aligned} & 0.06 \\ & 0.8048 \end{aligned}$		$\begin{array}{\|l\|} \hline 3.85 \\ 0.0497 \end{array}$		$\begin{aligned} & 1.19 \\ & 0.2752 \end{aligned}$		
WALD TEST $\left(\beta_{12}=0\right)$ chi2 Prob> chi2			$\begin{aligned} & 15.10 \\ & 0.0001 \end{aligned}$				$\begin{aligned} & 32.52 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 1013.21 \\ & 0.0000 \end{aligned}$		WALD TEST $\left(\beta_{12}=0\right)$ chi2 Prob>chi2			$\begin{aligned} & 9.23 \\ & 0.0024 \end{aligned}$				$\begin{aligned} & 0.37 \\ & 0.5435 \end{aligned}$				$\begin{aligned} & 5.43 \\ & 0.0198 \end{aligned}$		
WALD TEST $\left(\beta_{11}=\beta_{r i}=0\right)$ chi2 Prob> chi2			$\begin{aligned} & 8.02 \\ & 0.0003 \end{aligned}$				$\begin{aligned} & 49.66 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 1263.19 \\ & 0.0000 \end{aligned}$		$\begin{array}{\|l} \hline \text { WALD } \\ \text { TEST } \\ \left(\beta_{1}=\beta_{12}=0\right) \\ \text { chi2 } \\ \text { chio }>\text { chi2 } \end{array}$			$\begin{aligned} & 10.31 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 0.37 \\ & 0.8294 \end{aligned}$				$\begin{aligned} & 5.79 \\ & 0.0553 \end{aligned}$		
No.observatio	1242		1196		1242		1196		1242		1196		No.observatio	1242		1196		1242		1196		1242		1196		

Financial Development Index \rightarrow GDP													GDP \rightarrow Financial Development Index												
	Fixed effects				GMM one-step system				GMM two-step system					Fixed effects				GMM one-step system				GMM two-step system			
	Model 1		Model 2		Model 1		Model 2		Model 1		Model 2			Model 1		Model 2		Model 1		Model 2		Model 1		Model 2	
	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\mid \mathrm{z}$		Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\mid \mathrm{z}$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$								
$\mathbf{G D P}_{\text {t-1 }}$. 00350	0.000	. 00360	0.000	. 00583	0.000	. 00595	0.000	. 00583	0.000	. 005984	0.000	Financial Institutions Depth $_{\text {t-1 }}$. 8237	0.000	. 91638	0.000	. 9854	0.000	. 7887	0.000	. 9892	0.000	. 7967	0.000
GDP $_{\text {t. } 2}$			-.00060	0.054			-.00233	0.009			-.00225	0.000	Financial Institutions Depth $_{\text {t-2 }}$			-.0866	0.001			. 2031	0.008			. 1924	0.000
Financial Institutions Depth $_{t-1}$	-. 0182	0.202	. 08419	0.002	. 07003	0.000	1.0317	0.000	. 06938	0.000	1.03008	0.000	GDP $_{\text {t-1 }}$	-.0002	0.469	-.0008	0.016	-.0016	0.012	-.0020	0.000	-. 0015	0.000	-. 0019	0.000
Financial Institutions Depth ${ }_{\text {t.2 }}$			-. 13194	0.000			-.96992	0.000			-.97956	0.000	GDP $_{\text {t-2 }}$. 00161	0.000			. 0024	0.000			. 0223	0.000
R-squared	0.1469		0.1011										R-squared	0.9824		0.9854									
$\begin{aligned} & \mathrm{AB} \mathrm{AR}(1) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \end{aligned}$					$\begin{aligned} & \hline-11.47 \\ & 0.000 \end{aligned}$		$\begin{gathered} -8.64 \\ 0.000 \end{gathered}$		$\begin{aligned} & \hline-3.81 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-3.88 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline \text { AB AR(1) } \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{aligned} & \hline-12.25 \\ & 0.000 \end{aligned}$		$\begin{gathered} -3.92 \\ 0.000 \end{gathered}$		$\begin{gathered} -4.82 \\ 0.000 \end{gathered}$		$\begin{gathered} -5.48 \\ 0.000 \end{gathered}$	
$\begin{aligned} & \mathrm{AB} \operatorname{AR}(2) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \end{aligned}$					$\begin{aligned} & -0.53 \\ & 0.597 \end{aligned}$		$\begin{aligned} & 1.25 \\ & 0.210 \end{aligned}$		$\begin{aligned} & \hline-0.26 \\ & 0.792 \end{aligned}$		$\begin{aligned} & \hline 0.97 \\ & 0.330 \end{aligned}$		$\begin{aligned} & \hline \mathrm{AB} \mathrm{AR}(2) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{aligned} & -2.77 \\ & 0.006 \end{aligned}$		$\begin{gathered} -3.04 \\ 0.002 \end{gathered}$		$\begin{aligned} & -2.26 \\ & 0.024 \end{aligned}$		$\begin{aligned} & -3.11 \\ & 0.002 \end{aligned}$	
$\begin{aligned} & \text { Sargan test } \\ & \text { chi2 } \\ & \text { Prob > chi2 } \end{aligned}$					$\begin{aligned} & \hline 567.90 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline 235.68 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 567.90 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 235.68 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \text { Sargan test } \\ & \text { chi2 } \\ & \text { Prob > chi2 } \end{aligned}$					$\begin{aligned} & \hline 110.94 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline 129.19 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 110.94 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 129.19 \\ & 0.000 \end{aligned}$	
Hansen test chi2 Prob > chi2									$\begin{aligned} & 45.17 \\ & 0.629 \end{aligned}$		$\begin{aligned} & 40.55 \\ & 0.661 \end{aligned}$		Hansen test chi2 Prob > chi2									$\begin{aligned} & 44.97 \\ & 0.637 \end{aligned}$		$\begin{aligned} & 42.63 \\ & 0.573 \end{aligned}$	
WALD TEST ($\beta_{t-1}=0$) chi2 Prob > chi2	$\begin{aligned} & 1.63 \\ & 0.2019 \end{aligned}$		$\begin{aligned} & 10.07 \\ & 0.0015 \end{aligned}$		$\begin{aligned} & 23.67 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 79.02 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 378.65 \\ & 0.0000 \end{aligned}$		$\begin{gathered} 954.38 \\ 0.0000 \end{gathered}$		WALD TEST ($\beta_{t-1}=0$) chi2 Prob > chi2	$\begin{aligned} & 0.52 \\ & 0.4694 \end{aligned}$		$\begin{aligned} & 5.83 \\ & 0.0160 \end{aligned}$		$\begin{aligned} & 6.25 \\ & 0.0124 \end{aligned}$		$\begin{aligned} & 12.56 \\ & 0.0004 \end{aligned}$		$\begin{aligned} & 123.75 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 141.73 \\ & 0.0000 \end{aligned}$	
WALD TEST ($\beta_{\mathrm{t}-2}=0$) chi2 Prob > chi 2			$\begin{aligned} & 25.72 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 70.85 \\ & 0.0000 \end{aligned}$				$\begin{gathered} 860.59 \\ 0.0000 \end{gathered}$		WALD TEST ($\beta_{\mathrm{t}-2}=0$) chi2 Prob > chi2			$\begin{aligned} & 22.36 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 16.44 \\ & 0.0001 \end{aligned}$				$\begin{aligned} & 261.85 \\ & 0.0000 \end{aligned}$	
```WALD TEST ( \(\beta_{\mathrm{t}-1}=\beta_{\mathrm{t}}\) \({ }_{2}=0\) ) chi2 Prob > chi2```			$\begin{aligned} & 14.63 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 83.47 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 1003.02 \\ & 0.0000 \end{aligned}$		```WALD TEST ( \(\beta_{t-1}=\beta_{t-}\) \({ }_{2}=0\) ) chi2 Prob > chi2```			$\begin{aligned} & 11.36 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 22.66 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 272.54 \\ & 0.0000 \end{aligned}$	
No.observati	1242		1196		1242		1196		1242		1196		No.observati	1242		1196		1242		1196		1242		1196	

50 Journal of Accounting and Finance Vol. 23(6) 2023
inancial Development Index $\rightarrow$ GDP




Financial Development Index $\rightarrow$ GDP													GDP $\rightarrow$ Financial Development Index												
	Fixed effects				GMM one-step system				GMM two-step system					Fixed effects				GMM one-step system				GMM two-step system			
	Model 1		Model 2		Model 1		Model 2		Model 1		Model 2			Model 1		Model 2		Model 1		Model 2		Model 1		Model 2	
	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{\mid c}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	P> $\|2\|$	Coef.	P> $\|2\|$		Coef.	P> $\mid$ \| $\mid$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|2\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|z\|$
$\mathbf{G D P}_{\text {t-1 }}$	. 003495	0.000	. 003551	0.000	. 00504	0.000	. 005699	0.000	. 00508	0.000	. 00567	0.000	Financial Markets Access $_{\text {t- }}$	. 7815	0.000	. 6662	0.000	. 9836	0.000	. 7755	0.000	. 9822	0.000	. 7833	0.000
$\mathrm{GDP}_{\mathrm{t} 2}$			-.00068	0.049			-.00312	0.000			-.00318	0.000	Financial Markets Access $_{\mathrm{t} 2}$			. 1231	0.000			. 2358	0.030			. 2236	0.000
Financial   Markets Access $_{\text {t-1 }}$	. 009979	0.227	. 04818	0.001	. 10278	0.000	. 276343	0.000	. 10196	0.000	. 273923	0.000	$\mathrm{GDP}_{\text {t-1 }}$	. 0015	0.024	. 0013	0.065	-.0014	0.330	. 0002	0.458	-. 0015	0.000	-. 0011	0.000
Financial   Markets   Access $_{12}$			-.04826	0.001			-. 18899	0.001			-. 18609	0.000	$\mathrm{GDP}_{\mathrm{t} 2}$			. 0007	0.319			-. 0018	0.909			. 0002	0.362
R-squared	0.1434		0.1475										R-squared	0.9407		0.9432									
$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(1) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{aligned} & \hline-10.48 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-10.06 \\ & 0.000 \end{aligned}$		$\begin{gathered} -3.79 \\ 0.000 \end{gathered}$		$\begin{aligned} & -4.20 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(1) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \end{aligned}$					$\begin{aligned} & \hline-13.90 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-4.17 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-4.35 \\ & 0.000 \end{aligned}$		$\begin{gathered} \hline-4.18 \\ 0.000 \end{gathered}$	
$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(2) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{gathered} -1.04 \\ 0.299 \end{gathered}$		$\begin{aligned} & 1.99 \\ & 0.046 \end{aligned}$		$\begin{aligned} & -0.52 \\ & 0.602 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 0.195 \end{aligned}$		$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(2) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{aligned} & \hline-0.46 \\ & 0.647 \end{aligned}$		$\begin{gathered} \hline-1.86 \\ 0.063 \end{gathered}$		$\begin{gathered} -0.44 \\ 0.657 \end{gathered}$		$\begin{aligned} & -2.71 \\ & 0.007 \end{aligned}$	
Sargan test chi2   Prob > chi2					$\begin{aligned} & 583.55 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 412.13 \\ & 0.000 \end{aligned}$		  583.55 412.13   0.000 0.000				Sargan test chi2   Prob>chi2					$\begin{aligned} & 69.55 \\ & 0.028 \end{aligned}$		$\begin{aligned} & \hline 71.32 \\ & 0.007 \end{aligned}$		$\begin{aligned} & \hline 69.55 \\ & 0.028 \end{aligned}$		$\begin{aligned} & \hline 71.32 \\ & 0.007 \end{aligned}$	
Hansen test chi2 $\qquad$									44.96 45.08   0.638 0.469				Hansen test chi2   Prob>chi2									$\begin{aligned} & 44.92 \\ & 0.639 \end{aligned}$		$\begin{aligned} & 44.40 \\ & 0.497 \end{aligned}$	
WALD TEST   $\left(\beta_{\mathrm{t}-1}=0\right)$ chi2   Prob > chi2	$\begin{aligned} & 1.46 \\ & 0.2266 \end{aligned}$		$\begin{aligned} & 11.44 \\ & 0.0007 \end{aligned}$		$\begin{aligned} & 39.15 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 26.85 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 1601.02 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 301.97 \\ & 0.0000 \end{aligned}$		WALD TEST   $\left(\beta_{\mathrm{t}-\mathrm{I}}=0\right)$ chi 2   Prob>chi2	$\begin{aligned} & 5.09 \\ & 0.0242 \end{aligned}$		$\begin{aligned} & 3.40 \\ & 0.0653 \end{aligned}$		$\begin{aligned} & 0.95 \\ & 0.3296 \end{aligned}$		$\begin{aligned} & 0.55 \\ & 0.4581 \end{aligned}$		$\begin{aligned} & 13.95 \\ & 0.0002 \end{aligned}$		$\begin{aligned} & 13.33 \\ & 0.0003 \end{aligned}$	
WALD TEST   $\left(\beta_{\mathrm{t} 2}=0\right)$ chi2   Prob>chi2			$\begin{aligned} & 11.97 \\ & 0.0006 \end{aligned}$				$\begin{aligned} & 10.98 \\ & 0.0009 \end{aligned}$				$\begin{aligned} & 111.14 \\ & 0.0000 \end{aligned}$		WALD TEST   $\left(\beta_{1-2}=0\right)$ chi2   Prob>chi2			$\begin{aligned} & 1.00 \\ & 0.3185 \end{aligned}$				$\begin{aligned} & 0.01 \\ & 0.9088 \end{aligned}$				$\begin{aligned} & 0.83 \\ & 0.3623 \end{aligned}$	
WALD TEST $\begin{gathered} \left(\beta_{\mathrm{r}-1}=\beta_{\mathrm{ri}}=0\right) \\ \text { chi2 } \\ \text { Prob > chi2 } \end{gathered}$			$\begin{aligned} & 6.52 \\ & 0.0015 \end{aligned}$				45.43   0.0000				$\begin{aligned} & 1146.93 \\ & 0.0000 \end{aligned}$		WALD TEST $\begin{gathered} \left(\beta_{\mathrm{t}-1}=\beta_{\mathrm{t} 2}=0\right) \\ \text { chi2 } \\ \text { Prob > chi2 } \end{gathered}$			$\begin{aligned} & 3.46 \\ & 0.0317 \end{aligned}$				$\begin{aligned} & 0.56 \\ & 0.7554 \end{aligned}$				$\begin{aligned} & 16.29 \\ & 0.0003 \end{aligned}$	
No.observatio	1242		1196		1242						No.observatio	1242		1196		1242		1196		1242		1196			



Financial Development Index $\rightarrow$ GDP													GDP $\rightarrow$ Financial Development Index												
	Fixed effects				GMM one-step system				GMM two-step system					Fixed effects				GMM one-step system				GMM two-step system			
	Model 1		Model 2		Model 1		Model 2		Model 1		Model 2			Model 1		Model 2		Model 1		Model 2		Model 1		Model 2	
	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	P> $\mid$ z $\mid$		Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|z\|$	Coef.	$\mathrm{P}>\|\mathrm{z}\|$	Coef.	$\mathrm{P}>\|z\|$	Coef.	$P>\|z\|$								
$\mathrm{GDP}_{\mathrm{t}-1}$	. 003536	0.000	. 003622	0.000	. 00554	0.000	. 00719	0.000	. 00552	0.000	. 007202	0.000	Financial Markets Efficiency $_{\text {t-1 }}$	. 7127	0.000	. 7272	0.000	. 7734	0.000	. 7783	0.000	. 7806	0.000	. 8136	0.000
$\mathrm{GDP}_{\mathrm{t} 22}$			-.00058	0.093			-.00289	0.000			-.00291	0.000	Financial   Markets   Efficiency $_{\text {t. }}$			-.019	0.483			. 0402	0.686			. 0043	0.906
Financial Markets Efficiency $_{\text {t. }}$	-.00916	0.027	-.01885	0.002	-. 0136	0.000	-. 10759	0.000	-. 0138	0.000	-. 10798	0.000	$\mathrm{GDP}_{\text {t-1 }}$	. 0029	0.054	. 0033	0.038	. 0052	0.066	. 0070	0.023	. 0051	0.000	. 0064	0.000
Financial Markets Efficiency $_{12}$			. 008651	0.155			. 123455	0.000			. 125110	0.000	$\mathrm{GDP}_{\mathrm{t} 2}$			-. 0003	0.835			-.0033	0.279			-.0032	0.000
R-squared	0.1392		0.1281										R-squared	0.8053		0.8158									
$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(1) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \end{aligned}$					$\begin{aligned} & -11.00 \\ & 0.000 \end{aligned}$		$\begin{aligned} & -9.39 \\ & 0.000 \end{aligned}$		$\begin{gathered} \hline-3.84 \\ 0.000 \end{gathered}$		$\begin{aligned} & \hline-4.07 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(1) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \end{aligned}$					$\begin{aligned} & -9.53 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-4.35 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-4.65 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline-4.46 \\ & 0.000 \end{aligned}$	
$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(2) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{aligned} & -0.61 \\ & 0.542 \end{aligned}$		$\begin{aligned} & 2.36 \\ & 0.018 \end{aligned}$		$\begin{aligned} & -0.31 \\ & 0.753 \end{aligned}$		$\begin{aligned} & 1.62 \\ & 0.106 \end{aligned}$		$\begin{aligned} & \mathrm{AB} \quad \mathrm{AR}(2) \\ & \mathrm{z} \\ & \mathrm{p} \text { - value } \\ & \hline \end{aligned}$					$\begin{gathered} -2.03 \\ 0.043 \end{gathered}$		$\begin{aligned} & \hline-1.37 \\ & 0.169 \end{aligned}$		$\begin{gathered} -1.76 \\ 0.079 \end{gathered}$		$\begin{aligned} & -1.46 \\ & 0.144 \end{aligned}$	
Sargan test chi2   Prob > chi2					$\begin{aligned} & 605.41 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 380.21 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 605.41 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 380.21 \\ & 0.000 \end{aligned}$		Sargan test chi2   Prob>chi2					$\begin{aligned} & 110.99 \\ & 0.000 \end{aligned}$		$\begin{aligned} & \hline 87.95 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 110.99 \\ & 0.000 \end{aligned}$		$\begin{aligned} & 87.95 \\ & 0.000 \end{aligned}$	
Hansen test chi2   Prob>chi2									45.75 45.15   0.606 0.466				Hansen test chi2   Prob > chi2									$\begin{aligned} & 44.49 \\ & 0.656 \end{aligned}$		$\begin{aligned} & 43.85 \\ & 0.521 \end{aligned}$	
WALD TEST   $\left(\beta_{\mathrm{t}-1}=0\right)$ chi2   Prob>chi2	$\begin{aligned} & 4.89 \\ & 0.0272 \end{aligned}$		$\begin{aligned} & 9.25 \\ & 0.0024 \end{aligned}$		$\begin{aligned} & 1.06 \\ & 0.3030 \end{aligned}$		$\begin{aligned} & 15.89 \\ & 0.0001 \end{aligned}$		$\begin{aligned} & 120.92 \\ & 0.0000 \end{aligned}$		$\begin{gathered} 746.91 \\ 0.0000 \end{gathered}$		WALD   TEST   $\left(\beta_{\mathrm{t}-\mathrm{I}}=0\right)$ chi2   Prob > chi2	$\begin{aligned} & 3.72 \\ & 0.0539 \end{aligned}$		$\begin{aligned} & 4.32 \\ & 0.0380 \end{aligned}$		3.38 0.060		$\begin{aligned} & 5.15 \\ & 0.0232 \end{aligned}$		$\begin{aligned} & 106.69 \\ & 0.0000 \end{aligned}$		$\begin{aligned} & 75.36 \\ & 0.0000 \end{aligned}$	
WALD TEST   $\left(\beta_{\mathrm{t} 2}=0\right)$ chi2   Prob > chi2			$\begin{aligned} & 2.02 \\ & 0.1554 \end{aligned}$				$\begin{aligned} & 22.73 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 1306.65 \\ & 0.0000 \end{aligned}$		WALD TEST   $\left(\beta_{1-2}=0\right)$ chi 2   Prob > chi2			$\begin{aligned} & 0.04 \\ & 0.8349 \end{aligned}$				$\begin{aligned} & 1.17 \\ & 0.2789 \end{aligned}$				$\begin{aligned} & 96.14 \\ & 0.0000 \end{aligned}$	
WALD TEST $\begin{gathered} \left(\beta_{\mathrm{t}-1}=\beta_{\mathrm{rt} 2}=0\right) \\ \text { chi2 } \\ \text { Prob }>\text { chi2 } 2 \end{gathered}$			$\begin{aligned} & 5.28 \\ & 0.0052 \end{aligned}$				$\begin{aligned} & 22.83 \\ & 0.0000 \end{aligned}$				$\begin{aligned} & 1321.62 \\ & 0.0000 \end{aligned}$		WALD TEST $\begin{gathered} \left(\beta_{\mathrm{t}-1}=\beta_{\mathrm{t} 2}=0\right) \\ \text { chi2 } \\ \text { Prob > chi2 } \end{gathered}$			$\begin{aligned} & 2.38 \\ & 0.0926 \end{aligned}$				$\begin{aligned} & 5.34 \\ & 0.0693 \end{aligned}$				$\begin{aligned} & 172.68 \\ & 0.0000 \end{aligned}$	
No.observatio	1242		1196		1242		1196		1242				No.observatio	1242		1196		1242		1196		1242		1196	



