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Using empirical evidence from East and North Africa Stock Markets, this paper examines and compares 
alternative distribution density forecast methods of three generalised autoregressive conditional 
heteroscedasticity (GARCH) models. We employed the symmetric GARCH, Glosten Jagannathan and 
Runkle version of GARCH (GJR-GARCH) and Exponential GARCH methods to investigate the effect of 
stock return volatility using Gaussian, Student-t and Generalised Error distribution densities. The results 
show that the use of GJR and EGARCH with non-normal distribution densities appear justified to model 
the asymmetric characteristics of both indices. The evidence so far shows that in both markets, negative 
shocks would generally have a greater impact on future volatility than positive shocks, confirming the 
existence of leverage effect. The presence of leverage effect suggests that investors in these markets 
should be rewarded for taking up additional leverage risk as a fall in equity value (resulting from 
volatility) would mean a rise of debt to equity ratio and therefore, increase in financial distress risk. With 
respect to forecasting evaluation, the results indicate that clearly, symmetric GARCH model completely 
dominates the others in Kenya, while both GARCH and EGARCH best capture the Tunisian market. 
 
JEL Classification: C01 C22 C53 C58 G17 
 

INTRODUCTION 
 
 Studies in time series econometrics have shown that stock returns follow non-normal distribution 
density (Hsu et al., 1974; Hagerman, 1978; Lau et al., 1990; Kim and Kon, 1994). These studies in turn 
confirmed that where the kurtosis of time series of stock returns is greater than normal, the distribution is 
either skewed to the left or to the right and the variance of the stock returns is heteroscedastic (i.e. non-
constant variance) as opposed to homoscedastic (i.e. constant variance). This heteroscedasticity in the 
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error variance is described as uncertainty or risk by the financial analyst and it has become important in 
modern theory of finance. Using Autoregressive Conditional Heteroscedasticity (ARCH), Engle (1982) 
modelled the time varying variances of United Kingdom inflation. This has become a benchmark 
econometric tool for modelling economic and financial series over the years.  The linear ARCH (q) model 
is characterized by a long lag length of q in several of its usage. Bollerslev (1986) presents a more 
malleable lag structure of the ARCH known as the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) to resolve this empirical weakness of the ARCH. Some empirical works 
have shown that the first order lag length of the GARCH is adequate to model the long memory processes 
of time varying variance (French et al., 1987; Franses & Van Dijk, 1996).  Besides, a study conducted by 
Black (1976) revealed that variation in stock price has an unequal impact on volatility. This behaviour in 
financial time series is known as the leverage effect (i.e. large negative returns appear to increase 
volatility more than positive returns of the same magnitude). The standard GARCH is found inadequate 
to model the dynamics of this leverage effect. Furthermore, Nelson (1991) and Glosten et al. (1993) 
respectively presented the Exponential GARCH and Threshold GARCH (also known as GJR after its 
proponents) to account for this unequal response of volatility. 
 While there has been extensive research on symmetric and asymmetric GARCH models in the 
academic literature since the introduction of ARCH/GARCH, GJR-GARCH and EGARCH (Engle, 1982; 
Bollerslev, 1986; Glosten et al., 1993 and Nelson, 1991), few studies have concentrated on comparing 
alternative density forecast models. Hamilton and Susmel (1994), Lopez (2001), Franses and Ghijsels 
(1999) and Wilhelmsson (2006) are the obvious ones. The previous studies focused on symmetric 
GARCH models and none of these studies has explicitly focused on evaluating both symmetric and 
asymmetric GARCH models with the introduction of symmetric and asymmetric distribution densities. 
Furthermore, another striking feature of high-frequency financial time series of stock returns is that they 
are frequently characterized by a fat-tailed distribution. Available literature in finance indicate that, the 
kurtosis of most financial asset returns is greater than 3 (Simkowitz & Beedles, 1980; Kon, 1984). This 
suggests that extreme values are much more likely to be observed in stock market returns than the normal 
distribution.   
 Nevertheless, in this study we show that this gap can be filled by introducing rigorous alternative 
density distribution methodology to symmetric and asymmetric GARCH models. The performance of 
GARCH (1, 1), GJR-GARCH (1, 1) and EGARCH (1, 1) models are compared with the introduction of 
different distribution densities (Gaussian, Student-t and GED). The study is thus, motivated by 
recognising the importance of accurate volatility measurement and forecast in a wide range of financial 
applications such as asset pricing, option pricing as well as portfolio selection. Furthermore, the paper 
contributes to the academic literature in three ways. First, we demonstrate that this gap can be filled by a 
rigorous density forecast models comparison methodology. Second, the performance of GARCH-type 
models are compared with the introduction of normal and non-normal distribution densities for modelling 
and forecasting the conditional volatility. This addresses the methodological issue as to which GARCH-
type model couple with distribution density variant better estimates and forecasts stock returns volatility. 
Third, we use high frequency stock data from the Nairobi Stock Exchange (NSE) and Tunisia Stock 
Exchange (TSE) Composite Indices to facilitate meaningful comparison of the forecast results. 
 Studies into economic and financial time series have long recognized that stock returns exhibit heavy-
tailed distribution probability. One main motivation for this heavy-tailed feature is that the conditional 
variance may be non-constant. Although excess kurtosis of stock returns can successfully be removed by 
GARCH model, it cannot cope with the skewness of the distribution of stock market returns. Thus, 
forecast estimates from GARCH can be expected to be biased for a skewed time series. Stock market 
returns distribution has tails that are heavier than implied by the GARCH process with Gaussian. 
Therefore, by modelling financial time series such as stock returns, a researcher must assume not only 
Gaussian white noise but also independently identical distribution (i.i.d) white noise process with a 
heavy-tailed distribution. Standard GARCH models assume that the error distribution is Gaussian. 
However, evidence shows that the error exhibits non-normal distribution densities. Wilhelmsson (2006) 
showed that allowing for a leptokurtic error distribution leads to significant improvements in variance 
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forecasts compared to using the Gaussian distribution. Nelson (1991) found that assuming a generalised 
error distribution better modelled the conditional variance than using normal distribution. The choice of 
the underlying distribution for the error term is crucial if the volatility model is used in risk modelling. It 
was anticipated that the problems posed by skewness and kurtosis could produce residuals of conditional 
heteroscedasticity models that could be condensed when appropriate distribution density was used. Most 
recent econometric studies have shown the development of other non-linear models which consider the 
skewed distribution, for example, the exponential GARCH (EGARCH) model, introduced by Nelson 
(1991). Thus, choosing the appropriate distribution density that can model and forecast the first and 
second moments is important, hence, our motivation to investigate conditional heteroscedasticity with the 
introduction of different distribution densities. 
 The remainder of the study is organised as follows: the next section details the empirical models. Data 
description and methodology used in this study are explained in section three. The fourth section presents 
results and analyses and the conclusions are presented in the final section. 
 
 
EMPIRICAL MODELS 
  
 Two moments (i.e. mean and variance) equations are used to define the ARCH/GARCH models. The 
return process, rt, was taken into account by the mean equation which was made up of the conditional 
mean, , which might encompass terms of autoregressive(AR) and moving average(MA) and error term, 

t, that followed a conditional normal distribution with mean of zero and variance, . Furthermore, the 
information set available to investors up to time t-1 is represented by, t-1, thus, 

                  (1) 
Where 

                                         (2) 
 
The conditional variance ht was modelled using symmetric and asymmetric GARCH models with the 
introduction of three different distribution densities (i.e. Gaussian, Student-t and GED). 
 
ARCH Model 
 Engle (1982) seminal work suggested to model time varying conditional heteroscedasticity using past 
error term to estimate the series variance as follows: 

                  (3) 

 
GARCH Model 
 Bollerslev (1986) proposed the GARCH model which suggests that time varying heteroscedasticity 
was a function of both past innovations and past conditional variance (i.e. past volatility). The GARCH 
model signifies an infinite order ARCH model expressed as: 

                                                                (4) 

 Where 0, i and j are non-negative constants. 
 
Exponential GARCH (EGARCH) Model 
 Nelson (1991) introduced the exponential GARCH model to capture the asymmetric (or �directional�) 
response of volatility. Nelson and Cao (1992) argue that the imposition of non-negativity constraints on 
the parameters; i and j in the linear GARCH model are too restrictive, while in the EGARCH model 
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there is no such restriction. The conditional variance, ht, in the EGARCH model is an asymmetric 
function of lagged disturbances as follows: 
 

                                                              (5) 

        
Since the log of the conditional variance is modelled, the leverage effect is exponential, rather than 

quadratic and even if the parameters are negative, the conditional variance will be positive. For  

means that negative shocks will have a bigger impact on expected volatility than positive shocks of the 
same magnitude. This is often referred to in the literature as the leverage effect. The EGARCH model 
allows positive and negative shocks to have a distinct impact on volatility. It also allows large shocks to 
have a superior impact on volatility than the standard GARCH model. 
 
The GJR-GARCH Model 
 The GJR-GARCH model was presented by Glosten, Jagannathan and Runkle (1993). The GJR 
augments the standard GARCH with an additional ARCH term conditional on the sign of the past 
innovation and is expressed as: 

                                                   (6) 

Where 1 measures the asymmetric (or leverage) effect and  is a dummy variable which is equal to 1 

when is negative. In the GJR (1, 1) model, good news,  and bad news, , possess 

differential effects on the conditional variance. Good news has an impact of , while bad news has an 

impact of . If , bad news increases volatility and this in turn means that there is a leverage 

effect for the AR (1)-order.  If , the news impact is asymmetric. 

 
 
DATA AND METHODS 
 
Data Description 
 The daily stock price indices data which are used in this research are obtained from Standard & 
Poor/International Finance Corporation Emerging Market Database (S&P/IFC EMDB). This source is 
used largely because it is a very organized and comprehensive source of stock price data, providing 
readily accessible and reliable data on emerging equity markets than most other sources. For example, 
S&P/IFC EMDB was the first database, from 1975, to track comprehensive information and statistics on 
emerging stock market indices. The S&P/IFC Global indices, used in this study, do not impose 
restrictions on foreign ownership and include a sufficient number of stocks in individual market indices 
without imposing float or artificial industry-composition models of markets. Besides, the S&P/IFC 
database is attractive because it has been adjusted for all capital changes as well as the effects of corporate 
restructuring such as merger, acquisition, and spin offs/demerger as well as being free from data 
backfilling and survivorship bias. 
 The daily return, rt consists of transformed daily closing index price, Pt measured in local currency. 
Our measurements include the Nairobi Stock Exchange (NSE) Index (NSEI) and Tunisia Stock Exchange 
Overall Index (TSEI). The stock price indices are transformed into natural log returns in order to obtain a 
stationary series as: 

                                                                                                                                (7) 
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Where rt is the market return at time t, pt and pt-1 are the contemporaneous and one period lagged equity 
price indices, respectively. Natural lognormal is preferred as it computes continuous compound returns. 
Table 1 below provides further details of the data used in this research, including the types of the stock 
indices used, the time period of the data for each market (and hence sample observations), and currency 
of denomination. The indices used in this study are the benchmark indices in their respective stock 
markets. 
 

TABLE 1 
STOCK MARKET DATA PROFILE 

Country Method of compiling 
data 

Index Name Period of data No of Obs  Currency  Source 
of Data 

Kenya Geometric Mean index 
market capitalization 

NSE All 
Share Index 

1997 � 2014 4958 Shillings  S&P/IFC 
EMDB 

Tunisia Weighted index market 
capitalization 

TSE All 
Share Index  

1997 � 2014 4958 Dirham S&P/IFC 
EMDB 

 
 Graphical analysis (as below) of the time series of NSEI and TSEI returns (the upper panel of Figures 
1 & 2) even without statistical tests suggest that the returns are heteroscedastic (non-constant in variance) 
and non-normally distributed (not identically and independently distributed, i.i.d., normal). There is poor 
fit of the normal distribution form to the histogram of daily index returns as well as the standardised 
residual and the data shows a pattern typical of leptokurtosis. Besides, as shown in the lower panel of 
Figures 1 & 2, the null hypothesis that the GARCH process innovations are homoscedastic and normally 
distributed using maximum likelihood ratio test have been convincingly rejected. Therefore, since the 
NSE and TSE data possess incidence of heteroscedasticity, they are obviously candidates to fit GARCH 
models. Furthermore, the use of asymmetric distribution densities such as GED and Student-t become 
appropriate as they can smoothly transform from a normal distribution into a leptokurtic distribution 
(peakedness) or even into a platykurtotic distribution (thin tails).  
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FIGURE 1 
NSEI DENSITY, RETURNS, RESIDUALS, CONDITIONAL VARIANCE AND STANDARDIZED 
RESIDUALS
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FIGURE 2 
TSEI DENSITY, RETURNS, RESIDUALS, CONDITIONAL VARIANCE AND STANDARDIZED 
RESIDUALS
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TABLE 2 
DESCRIPTIVE STATISTICS FOR DAILY RETURNS 

 
Country Mean  Std. Dev. Skewness Kurtosis Q-Stat (100) J. Bera 

Kenya 0.008 1.343 -0.218 765 (158)*** (1.13e+08)*** 

Tunisia 0.014 0.848 3.5287 167 (29)* (5232382)*** 

J. Bera is the Jarque-Bera test for normality, Q-stat refers to Ljung-Box test for autocorrelation. 
 *** denotes statistical significance at 1%. ** denotes statistical significance at 5%. *denotes statistical 
significant at 10% 
 
 The descriptive statistics in Table 2 indicate that both markets produce positive mean returns. The 
daily mean return for Tunisia is higher than that of Kenya. However, the non-conditional variance as 
measured by the standard deviation for Kenya is higher than that of Tunisia. This controverts portfolio 
and asset pricing theory which states that higher risk corresponds with high return. The returns 
distribution for Kenya is negatively skewed while that of Tunisia is positively skewed. The null 
hypothesis for skewness that conforms to a normal distribution with coefficients of zero is rejected by 
both indices. The returns for both indices exhibit fat tail distribution as seen in the significant kurtosis 
well above the normal value of 3. The high and significant values of J. Bera test for normality decisively 
rejects the hypothesis of a normal distribution for both indices. Ljung-Box Q test statistic (Q-Stat) rejects 
the null hypothesis of no autocorrelation at 1 and 10 per cent levels for all numbers of lags (100) 
considered. The preceding statistics legitimize the use of autoregressive conditional heteroscedasticity 
models.   
 The statistical results indicate that both indices display skewness, non-normal distribution and exhibit 
autoregression. These stylized features are similar to the existing empirical literature from the developing 
markets (Kim, 2003; Ng, 2000) and developed markets (Fama, 1976; Kim & Kon, 1994). Furthermore, as 
return series revealed high value of kurtosis, it can be expected that a fatter-tailed distribution density, 
such as the Student-t or GED should provide a more accurate results than the Gaussian (Normal) 
distribution.  
 
Methods  
 The GARCH models are estimated using maximum likelihood estimation (MLE) process. This 
allowed the mean and variance processes to be jointly estimated. The MLE has numerous ideal 
characteristics in estimating parameters and these included sufficiency, (i.e. complete information about 
the parameter of importance contained in its MLE estimator); consistency (true parameter value that 
generated the data recovered asymptotically, i.e. data of sufficiently large samples) and efficiency (lowest 
possible variance of parameter estimates to achieve asymptotically). Moreover, several methods of 
inference in statistics and econometrics were developed based on MLE, such as chi-square test, modelling 
of random effects, inference with missing data and model selection criteria such as Akaike information 
criterion and Schwarz criterion. 
 
Gaussian 
 The Gaussian, also known as the normal distribution, is the widely used model when estimating 
GARCH models. For a stochastic process, the log-likelihood function for the normal distribution is 
calculated as: 

                                                                                                 (8) 
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Where T is the number of observations. 
Student�s-t Distribution 
 For a student-t distribution, the log-likelihood is computed as: 
 

                            (9) 

Where v is degrees of freedom, 2<v= and  is the gamma function. 

 
Generalised Error Distribution (GED) 
 Skewness and kurtosis are very important in applied finance such as asset pricing, option pricing, and 
portfolio selection. Thus, choosing the appropriate distribution density that can model these two moments 
is important, hence, the GED log-likelihood function of a normalised random error is computed as: 
 

                                              (10) 

Where                             (11) 

 
Goodness-of-fit Diagnostics 
 The order of the GARCH process can be identified by computing Q-statistic from the squared 
residuals and the Engle (1982) LM test is used to test for the ARCH effect in the residuals. The GARCH 
models in this study are compared by using various goodness-of-fit diagnostics such as Akaike 
information criterion, Schwarz Bayesian information criterion and log-likelihood.   
 
Forecast Evaluation 
 The one-step-ahead forecast of the conditional variance for the GARCH, EGARCH and GJR is 
obtained by updating equations (4), (5) and (6) by one period as, 

                             (12) 

                          (13) 

                          (14)
 

 
 Similarly, j-step-ahead forecast on the conditional variance can be obtained by updating equations 
(12), (13) and (14) by j-periods as, 

                                    (15)
 

                            (16)
 

                                      (17) 
However, it is rather difficult to obtain the j-step-ahead forecasts than the one-period-ahead forecasts 
assumed in this study although it is possible to obtain the j-step-ahead forecasts of the conditional 
heteroscedasticity recursively.

 

 In order to evaluate the forecasting performance of the GARCH, EGARCH and GJR models, 
forecasting tests encompassing different distribution densities are performed. The model that minimises 
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the loss function under these evaluation criteria is preferred. To measure the performance of the 
asymmetric GARCH models in forecasting the conditional variance, we compute four statistical measures 
of fit as follows; 
(i) Mean Absolute Error (MAE), represented as: 

                           (18) 

Where h is the number of steps ahead (i.e. number of forecast data points, where h is equal to 1, 

representing one step ahead), s the sample size, is the forecasted variance and is the conditional 
variance computed from equations (4), (5) and (6). 
(ii) Root Mean Square Error (RMSE), represented as: 

                                                   (19) 

(iii) The Mean Absolute Percentage Error (MAPE), represented as: 

                           (20) 

(iv) Theil Inequality Coefficient (TIC), represented as:     

                                         (21)      

 
 To calculate daily forecast and in order to assess the forecasting performance of each model, we 
simply split the respective time series in half between the in-sample period, and the out-of-

sample period, . We further estimate each model over the first part of the sample and then 

apply these results to forecast the conditional variance (volatility) over the second part of the sample 
period. 
 
 
EMPIRICAL RESULTS AND ANALYSES 
 
 We present and analyse our results of the estimated models in this section. Tables 3, 4 and 5 presents 
the results for the estimated parameters of GARCH, EGARCH and GJR models respectively, while some 
useful in-sample and out-of-sample diagnostics statistics are reported in Tables 6, 7, 8 and 9.  
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TABLE 3 
ESTIMATED STATISTICS-COMPARATIVE DISTRIBUTION DENSITY GARCH MODEL 

Kenya Tunisia 
 Gaussian Student-t GED Gaussian Student-t GED 

-0.0145 
(-0.7768) 

0.0009 
(0.1253) 

-2.52e-06 
(-0.0004) 

0.0216 
(1.9946)** 

0.0008 
(0.2930) 

-0.0002 
(-0.0159) 

0 0.8496 
(1.4245)

0.1617 
(8.8793)*** 

0.0730 
(12.1574)*** 

0.6769 
(1.2008) 

0.2139 
(1.5071) 

0.5731 
(36.3181)*** 

1 0.1497 
(0.6678) 

0.5351  
(8.1208)*** 

0.2850 
(12.5389)*** 

-0.0023 
(-5217)*** 

0.0946 
(1.5221) 

0.0772 
(4.6298)*** 

1 0.2626 
(1.9682)** 

0.4304 
(15.7551)*** 

0.6003 
(32.6182)*** 

0.3900 
(0.7221) 

-0.0047 
(-
6.5211)*** 

-0.0153 
(-4.1456)*** 

0.4123 0.9655 0.8853 0.3877 0.0899 0.0619 

TABLE 4  
ESTIMATED STATISTICS-COMPARATIVE DISTRIBUTION DENSITY EGARCH MODEL 

Kenya Tunisia 
 Gaussian Student-t GED Gaussian Student-t GED 

-0.0843 
(-1.0511) 

-0.0024 
(-0.3096) 

-2.76e-05 
(-0.0046) 

0.0031 
(0.2958) 

-5.35e-05 
(-0.0271) 

0.0001 
(0.0150) 

0 0.0402 
(0.0749) 

-0.3354 
(-11.7482)*** 

-0.2351 
(-
15.0850)*** 

-0.0151 
(-0.5972) 

-0.1371 
(-18.0746)*** 

-1.1440 
(-
17.2788)*** 

1 0.0918 
(0.3768) 

0.1107 
(5.6683)*** 

0.1052 
(20.6291)*** 

-0.0798 
(-2.4463)** 

-0.0356 
(-7.3020)*** 

-0.0845 
(-
11.4705)*** 

1 0.5779 
(0.8881) 

0.7751 
(50.9250)*** 

0.7999 
(54.6348)*** 

0.9188 
(23.5170)*** 

0.9765 
(694.4608)*** 

0.4480 
(13.8369)*** 

 0.0806 
(0.5309) 

-0.0173 
(-0.2455) 

-0.0079 
(-0.2444) 

-0.0747 
(-2.4099)** 

-0.0253 
(-2.0748)** 

-0.0897 
(-2.7529)*** 

 
  

11
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TABLE 5 
ESTIMATED STATISTICS-COMPARATIVE DISTRIBUTION DENSITY GJR-GARCH 

MODEL 
Kenya Tunisia 

 Gaussian Student-t GED Gaussian Student-t GED 
 0.0331 

(1.7006)* 
0.0009 
(0.1274) 

-7.12e-05 
(-0.0105) 

0.0362 
(2.6743)*** 

0.0058 
(0.6797) 

0.0269 
(0.8614) 

0 2.5590 
(4.3045)*** 

0.1613 
(8.8770)*** 

0.0728 
(12.2495)**
* 

0.4884 
(3.5894)*** 

0.2050 
(34.6357)*** 

0.6943 
(3.6711)*** 

1 0.0580 
(0.6730) 

0.5432 
(7.1137)*** 

0.2827 
(9.8550)*** 

0.0703 
(2.2515)** 

0.0401 
(3.5602)*** 

0.0832 
(2.5545)** 

1 -0.0192 
(-
246.6244)*** 

0.4312 
(15.7875)**
* 

0.6001 
(32.6835)**
* 

0.5709 
(6.1870)*** 

-0.0106 
(-
30.6009)*** 

0.5852 
(5.1884)*** 

0.1575 
(0.2013) 

0.4378 
(13.1952)**
* 

0.0980 
(19.0576)**
* 

-0.0438 
(-1.0699) 

0.0556 
(7.4548)*** 

0.1637 
(17.5788)**
* 

 Tables 3, 4 and 5 report the results estimated for GARCH, EGARCH and GJR-GARCH with three 
different distribution densities, while tables 6, 7 and 8 presents some useful in-sample diagnostics 
statistics. 

The statistics reported in the Tables 4 and 5 show that the use of GJR and EGARCH with non-normal 
distribution appears justified to model the asymmetric characteristics of both indices. The asymmetric 
coefficients are mostly statistically significant at standard levels. This means that, as expected, negative 
shocks would have greater effects on future volatility than positive shocks. The evidence here validates 
the asymmetric GARCH proposition that bad news has greater impact on future volatility than good 
news. However, the Gauss-EGARCH in Kenya and Gauss-GJR in Tunisia exhibit a reverse volatility 
asymmetry, contradicting the widely accepted theory of volatility asymmetry - negative returns induce a 
higher volatility than positive returns (Wan et al., 2014).  The evidence so far showed that in both 
markets, negative shocks would generally have a greater impact on future volatility than positive shocks 
of the same magnitude, confirming the existence of leverage effect. The presence of leverage effect 
suggests that investors in these markets should be rewarded for taking up additional leverage risk as a fall 
in equity value would mean a rise of debt to equity ratio and therefore, increase in financial distress risk. 
Required rate of return is expected to be high in these markets due to compensation for additional 
leverage risk which places additional burden on indigenous companies seeking to raise finance from the 
domestic capital markets. Besides, investors and fund managers should go beyond the simple mean-
variance approach when allocating portfolios for these markets. Instead, they should explore information 
about volatility, information asymmetry, correlation, skewness and kurtosis.  
 The sum of the lagged error ( ) and the lagged conditional variance ( ) of the symmetrical GARCH 
model for both indices is less than the expected value of 1 regardless of the distribution density. This 
implies that the current shocks to the conditional variance will have less impact on future volatility. 
Mostly, the estimated parameters for both indices of the asymmetric GARCH model indicate that the 
ARCH ( 1) and GARCH ( 1) terms are statistically significant at standard levels. 
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TABLE 6 
DIAGNOSTICS STATISTICS-COMPARATIVE DISTRIBUTION DENSITY GARCH MODEL 

 
Kenya Tunisia 

 Gaussian Student-t GED Gaussian Student-t GED 
Q2(20) 13.945 

(0.833) 
0.0178 
(1.000) 

826 
(0.000) 

2.8997 
(1.000) 

5.8830 
(0.999) 

3.5450 
(1.000) 

ARCH(5) 13.9292 
(0.0161) 

0.0039 
(1.000) 

1070 
(0.000) 

0.2805 
(0.9980) 

0.3107 
(0.9974) 

0.3980 
(0.9954) 

AIC 3.0732 1.9599 2.1090 2.4599 -0.8482 0.8658 
SBIC 3.0801 1.9682 2.1172 2.4668 -0.8399 0.8741 
Log-Like -7176 -4573 -4922 -5743 1988 -2017 

TABLE 7 
DIAGNOSTICS STATISTICS-COMPARATIVE DISTRIBUTION DENSITY EGARCH MODEL 
Kenya Tunisia 
 Gaussian Student-t GED Gaussian Student-t GED 
Q2(20) 0.0588 

(1.000) 
0.0168 
(1.000) 

0.0135 
(1.000) 

3.1095 
(1.000) 

3.5592 
(1.000) 

3.4791 
(1.000) 

ARCH(5) 0.0379 
(1.000) 

0.0035 
(1.000) 

0.0030 
(1.000) 

0.2745 
(0.9981) 

0.4182 
(0.9948) 

0.1559 
(0.9250) 

AIC 3.0016 1.9336 1.9812 2.5884 -0.3036 1.0313 
SBIC 3.0071 1.9405 1.9881 2.5939 -0.2967 1.0382 
Log-Like -7009 -4513 -4624 -6044 714 -2405 

 
TABLE 8 

DIAGNOSTICS STATISTICS-COMPARATIVE DISTRIBUTION DENSITY GJR-GARCH 
MODEL 

Kenya Tunisia 
 Gaussian Student-t GED Gaussian Student-t GED 
Q2(20) 0.3360 

(1.000) 
0.0168 
(1.000) 

0.0136 
(1.000) 

3.1356 
(1.000) 

3.4044 
(1.000) 

3.1482 
(1.000) 

ARCH(5) 0.3138 
(0.9974) 

0.0035 
(1.000) 

0.0030 
(1.000) 

0.2731 
(0.9981) 

0.3655 
(0.9962) 

0.2731 
(0.9981) 

AIC 3.2559 1.9340 1.9841 2.6208 0.7060 2.7888 
SBIC 3.2628 1.9423 1.9924 2.6277 0.7143 2.7971 
Log-Like -7602 -4513 -4630 -6118 -1644 -6510 

 
Q2(20) are the Ljung-Box statistic at lag 20 of the squared standardised residuals. ARCH (5) refers to 

the Engle (1982) LM test for the presence of ARCH effect at lag 5. P-values are given in parentheses. 
AIC, SBIC and Log-Like are Akaike information criterion, Schwartz Bayesian information criterion and 
Log-Likelihood value, respectively. 
 Turning to distribution densities (Tables 6, 7 & 8); the non-normal distribution densities outperform 
the Gaussian. For instance, the log-likelihood function strongly increased when fatter tailed distribution 
densities are used especially for GARCH and EGARCH models. Furthermore, using the non-normal 
densities produced lower AIC and SBIC than the normal distribution density. From the preceding 
evidence, the GARCH models perform well with non-normal distribution densities. All models appeared 
effective by describing the dynamics of the series as shown by the Ljung-Box statistics for the squared 
standardised residuals with lag 20 which are non-significant at standard levels for both indices. The LM 
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test for the presence of ARCH at lag 5, indicated that conditional heteroscedasticity are removed for all 
three GARCH models regardless of the distribution density (with the exception of EGARCH with Gauss 
and GED for Kenya) which are all non-significant at standard level. The comparison between models 
with each distribution density indicates that, giving the different measures used for modelling volatility, 
EGARCH with student-t provides the best in-sample estimation for Tunisia, while in Kenya, all three 
GARCH models with student-t equally provide best in-sample estimation.  
 

TABLE 9 
FORECAST PERFORMANCE-COMPARATIVE DISTRIBUTION DENSITY GARCH MODEL 

Kenya Tunisia 

Model  Gaussian Student-t GED  Gaussian Student-t GED  

RMSE 1.650265 1.650124 1.650129 0.956941 0.956730 0.956731 

MAE 0.504377 0.502399 0.502246 0.158734 0.138916 0.138341 

MAPE 90.31276 84.78253 84.84265 4.798277 4.845077 4.847735 

TIC 0.991380 0.999433 0.999998 0.978106 0.999186 0.999819 

 
TABLE 10 

FORECAST PERFORMANCE-COMPARATIVE DISTRIBUTION DENSITY EGARCH 
MODEL 

Kenya Tunisia 

Model  Gaussian Student-t GED  Gaussian Student-t GED  

RMSE 1.652700 1.650142 1.618906 0.956731 0.956731 0.956730 

MAE 0.519005 0.502577 0.508178 0.141076 0.138227 0.138274 

MAPE 137.7295 85.22447 85.29662 4.838733 4.847400 4.846962 

TIC 0.952877 0.998572 0.999983 0.996821 0.999944 0.999892 

 
TABLE 11 

FORECAST PERFORMANCE-COMPARATIVE DISTRIBUTION DENSITY GJR-GARCH 
MODEL 

Kenya Tunisia 

Model  Gaussian Student-t GED  Gaussian Student-t GED  

RMSE 1.650296 1.650124 1.650129 0.957359 0.956739 0.957065 

MAE 0.508640 0.502402 0.502256 0.172617 0.143680 0.163715 

MAPE 101.6464 84.78291 84.85065 4.841254 4.831083 4.806144 

TIC 0.980434 0.999423 0.999957 0.964154 0.993992 0.973024 
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TABLE 12 
RANKING PERFORMANCE FORECAST 

 Gaussian 
 Kenya Tunisia 
Model  GARCH EGARCH GJR  GARCH EGARCH GJR 
RMSE 1 3 2 2 1 3 
MAE 1 3 2 2 1 3 
MAPE 1 3 2 1 2 3 
TIC 3 1 2 2 3 1 
Total  6 10 8 7 7 10 

    
 Student-t 
 Kenya Tunisia 
Model  GARCH EGARCH GJR GARCH EGARCH GJR 
RMSE 1 2 1 1 2 3 
MAE 1 3 2 2 1 3 
MAPE 1 3 2 2 3 1 
TIC 3 1 2 2 3 1 
Total  6 9 7 7 9 8 

     
 GED 
 Kenya Tunisia 
Model  GARCH EGARCH GJR  GARCH EGARCH GJR 
RMSE 2 1 2 2 1 3 

MAE 1 3 2 2 1 3 
MAPE 1 3 2 3 2 1 

TIC 3 1 1 2 3 1 

Total  7 9 7 9 7 8 

 
TABLE 13 

SUMMARY OF BEST PERFORMING MODEL 
 Kenya Tunisia 
Gaussian  GARCH GARCH/EGARCH 
Student-t GARCH GARCH 
GED GARCH/GJR EGARCH 

  
 Table 12 ranked the GARCH models when evaluated against each other with the introduction of the 
three different distribution densities for the disturbance term. The evidence in Tables 9, 10, 11 and 12 
indicated that clearly, in Kenya, the symmetric GARCH dominates the others, while in Tunisia, the 
symmetric GARCH and asymmetric EGARCH show similar forecasting powers. Furthermore, as Table 
13 indicates, the symmetric GARCH model outperformed the asymmetric GARCH models in Kenya by 
providing the best out-of-sample forecast, while both the GARCH and EGARCH provide best out-of-
sample forecast for the Tunisian market. This contradicts the evidence found in Malaysia and Singapore 
where asymmetric GARCH models clearly outperformed the symmetric GARCH (Nor and Shamiri, 
2007).The finding also showed that forecasting with heavy-tailed distribution densities yield no 
significant reduction of the forecast error than when normal distribution is assumed.  
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CONCLUSION 

 Over the last three decades, many academics and analysts have paid particular attention to stock 
market volatility since it can be used to measure and forecast in a wide range of financial applications, 
including portfolio selection, value at risk, asset pricing, hedging strategies and option pricing. This paper 
examines and compares alternative distribution density forecast methods to investigate the effect of stock 
return volatility.  
 The statistical results from the symmetric GARCH point towards the fact that in both markets, the 
current shocks to the conditional variance will have less impact on future volatility. The statistics reported 
in this study show that the use of GJR and EGARCH with non-normal distribution densities appears 
justified to model the asymmetric characteristics of both indices as the asymmetric coefficients are mostly 
statistically significant at standard levels. The evidence shows that news impact is asymmetric in both 
stock markets as the asymmetric coefficients for all densities are unequal to zero.  
 The evidence so far shows that in both markets, negative shocks would generally have a greater 
impact on future volatility than positive shocks of the same magnitude, confirming the existence of 
leverage effect. The presence of leverage effect suggests that investors in these markets should be 
rewarded for taking up additional leverage risk as a fall in equity value would mean a rise of debt to 
equity ratio and therefore, increase in financial distress risk. Required rate of return is expected to be high 
in these markets due to compensation for additional leverage risk which places additional burden on 
indigenous companies seeking to raise finance from the domestic capital markets. 
 The comparison between models with each distribution density indicates that, given the different 
measures used for modelling volatility, EGARCH with student-t provides the best in-sample estimation 
for Tunisia, while in Kenya, all three GARCH models with student-t equally provide best in-sample 
estimation.  With respect to forecasting evaluation, the results indicate that clearly, symmetric GARCH 
model completely dominated the others in Kenya, while both GARCH and EGARCH best capture the 
Tunisian market. 
 Finally, there are areas where further studies might be useful. For example, future research should 
focus on modelling and forecasting GARCH models with high frequency trading (i.e. intra-day) data. 
Further research should also consider exploring variety of models including other conditional variance 
models such as APARCH and long memory models such as FIEGARCH, FIAPARCH and CGARCH in 
order to allow a greater insight into the dynamics of these two markets. Lastly, similar study should be 
conducted in other African stock markets in order to provide a wider insight into the relevance of 
GARCH models in financial application in Africa frontiers. 
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