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This meta-analysis investigates the effects of four instructional dimensions rated on a scale from more 

Teacher-centered (T-C) to more Student-centered (S-C) plus several coded moderator variables on the 

achievement of undergraduate students in science education courses. More student-centered conditions 

served as the ‘treatment’ while more teacher-centered conditions were considered the ‘control.’ Hedges’ 

g, operationalized as the adjusted standardized differences between treatment and control means, served 

as the outcome measure. The weighted average difference between groups was g‾ = 0.34, k = 140 (random 

effects analysis), indicating an overall difference in favor of student-centered instruction. Out of four rated 

dimensions (Pacing, Teacher’s Role, Flexibility, and Adaptation) only Flexibility was significant in meta-

regression as a negative predictor of effect size. Two demographic variables (i.e., class size & subject 

matter), and one instructional moderator variables (i.e., technology use) were also significant when added 

to Flexibility, producing a model that accounted for 36% of total variation in effect size. 
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INTRODUCTION AND OBJECTIVES 

 

Perspectives: T-C and S-C Education  

To provide students with optimal opportunities to learn and to apply knowledge, the appropriate 

educational environments need to be present. Two particular learning environments, teacher-centered (T-

C) and student-centered (S-C), have enjoyed extensive research (e.g., Kirschner, Sweller & Clark, 2006; 

Tobias & Duffy, 2009) and application across undergraduate science education, as well as in many other 

grade levels and content areas. Additionally, a decades-spanning dichotomy has existed between these two 
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approaches, with a large body of literature characterized by “either/or” (i.e., either this, or that, not both) 

comparisons.  

 

Teacher-Centered Education (T-C) 

Although there has been considerable social experimentation with S-C learning, beginning in the 1970s 

(e.g., Summer Hill, British Infant Schools) until the present, T-C classrooms still represent the predominant 

pattern, especially in undergraduate science education. According to this orientation, the teacher sets the 

objectives, plans lessons, teaches students through direct instructional methods (e.g., lecture), assigns 

readings, provides guidance, evaluates student progress, and awards grades. This has often been referred to 

as traditional classroom instruction. Observational studies of classroom instruction, such as the research 

conducted by Rosenshine and Stevens (1986), explored correlations between teacher behaviour and student 

achievement outcomes, and identified instructional behaviors and patterns that ran parallel to those 

described via terms such as “direct instruction” (Rosenshine, 1976), “explicit teaching” (Stanovich, 1980), 

and “systematic teaching” (Morrison, 1926). Specifically, Rosenshine and Stevens (1986) described and 

grouped their results into six sequential teaching functions reflecting a direct instructional approach: 1) 

daily review; 2) presenting new material; 3) guiding student practice; 4) providing feedback and 

corrections; 5) conducting independent practice; and 6) weekly and monthly reviews. Throughout the T-C 

instructional process, students’ learning experience flows through the instructional conditions and 

parameters designed, implemented, and monitored by the teacher.  

In 1964, a massive experiment called Project Follow Through was initiated to test the efficacy of a 

range of instructional strategies, from so-called Direct Instruction to Open Education. After years of testing 

and millions of dollars spent, only one really striking finding emerged: direct instruction advantaged 

students in terms of achievement and affect, outperforming other models by as much as 1.5sd. While a great 

deal of controversy surrounds the conduct and findings of Project Follow Through, its results set a tone, 

particularly in mathematics, science and language teaching, that is still influential today (e.g., Klahr, 2009). 

 

Student-Centered Education (S-C) 

Constructivist ideas shift the focus of teaching/learning away from direct instruction and teacher 

dominance, by placing knowledge construction and many other processes by students at the center of the 

educational enterprise. Jonassen (1991) notes that many educators have applied constructivism to the 

development of learning environments, and suggests a set of S-C instructional design principles, namely: 

1) real-world relevant learning; 2) realistic approaches to solving real-world problems; 3) conceptual 

interrelatedness and multiple representations or perspectives on the content; 4) goals and objectives are 

negotiated, not imposed; 5) evaluations that serve as a self-analysis tools; 6) tools and environments that 

help students interpret multiple perspectives upon the world; and 7) learning that is internally controlled 

and mediated by the student (Jonassen, 1991). These principles form part of the basis for the “instructional 

dimensions” that will be examined in this project. 

Contrasted with the results of the Project Follow Through are more recent meta-analyses (e.g., Rosen 

& Salomon, 2007) that suggest an advantage for S-C instruction (i.e., constructivist-oriented pedagogy). 

Rosen and Salomon found a learning difference of +0.50sd for S-C teaching methods and “constructivist-

friendly” measures of achievement. Another meta-analysis by Freeman et al. (2014) examined university-

level science education along with other STEM subjects, finding an increase in learning over traditional 

lecturing of g‾ = 0.47sd (k = 158) and that the odds ratio for failing was 1.95 lower than traditional lecturing. 

Such a large discrepancy between findings for S-C and T-C instruction suggests that questions of the 

relative effectiveness of these instructional methods, in general, are still unsettled. 

 

Studying Combinations of T-C and S-C Practices 

In spite of the considerable research and conceptual literature on both sides of the S-C and T-C question, 

the fact is that few classrooms are all of one and none of the other. Gersten et al. (National Mathematics 

Advisory Panel, 2008) observed, after conducting a systematic review of T-C and S-C mathematics 

teaching practices: “(We) found no examples of studies in which students were teaching themselves or each 
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other without any teacher guidance; nor did the Task Group find studies in which teachers conveyed … 

content directly to students without any attention to their understanding or response. The fact that these 

terms, in practice, are neither clearly nor uniformly defined, nor are they true opposites, complicates the 

challenge of providing a review and synthesis of the literature…” (p. 12). Facing these apparent difficulties 

in finding a clear demarcation between T-C and S-C instructional conditions, Gersten et al. decided not to 

synthesize, but to instead describe the studies separately.  

This meta-analysis explores undergraduate-level chemistry, physics, biology, geology and psychology 

content areas and their relationship with T-C and S-C learning. Neither of these has been researched 

extensively through meta-analysis. In an exception, Aiello and Wolfle (1980) conducted a 30-study meta-

analysis on individualized instruction in science compared with a traditional lecture method. Individualized 

instruction was operationalized by separating studies into particular methods (i.e., audio-tutorial, computer-

assisted, personalized system, programmed, and a combination). Therefore, Aiello and Wolfle’s meta-

analysis was more centered on which method or combinations of instructional methods were superior. 

 

The Current Research Study  

This study is an extension of research that applied a conceptual model similar to that of Bernard, 

Borokhovski, Schmid, Waddington, and Pickup (2019). A literature-derived set of four instructional 

dimensions (Pacing, Teacher’s Role, Flexibility, and Adaptation), taken from the 11 instructional 

dimensions described by Bernard & Borokhovski (2013), was coded on a five-point scale ranging from 

predominantly T-C (the baseline score of ‘1’) to predominantly S-C (theoretical maximum of ‘5’). From 

true and quasi-experimental designs, researchers extracted effect sizes for achievement outcomes (k = 365) 

reflecting comparisons where more S-C condition(s) were designated the treatment and more T-C 

condition(s) the control. An average weighted effect size of g‾ = 0.44sd was found, indicating that classroom 

studies with more S-C learning produced modestly better achievement results than did studies with less S-

C learning. Additionally, meta-regression analysis resulted in two of the four dimensions (Pacing and 

Teacher’s Role) being significant predictors of ES. Interestingly, Pacing was a negative predictor of ES, 

while Teacher’s Role was positive. 

In the current study, these same four instructional dimensions (i.e., Pacing, Teacher’s Role, Flexibility, 

and Adaptation) are used as ES predictors, as well as several additional coded study features: research 

design, class size, subject matter, and various aspects of technology use to address the following research 

questions: 1) What are the overall effects of SC in science instruction in higher education classrooms? 2) 

What do individual dimensions contribute? 3) What is the influence of selected moderator variables? and 

4) Is there an overall model which involves dimensions and moderator variables?   

 

METHOD 

 

Literature Search Strategy 

Comprehensive literature searches during the relevant search period (i.e., 1960-2012), designed and 

conducted by a professional Information Specialist, were intended to identify and retrieve primary empirical 

quantitative studies from the mainstream journals, theses and dissertations, and gray literatures relevant to 

the major research question. Key terms that were used in search strategies, with some adaptations to account 

for varying terminology across fields and databases, included: (“teacher centered,” “student centered” 

“learner centered,” “inquiry,” “problem based,” “experiential,” “discovery”) AND (college, university, 

postsecondary),” AND (“learn,” “achievement*”).  

A variety of databases were searched within the field of education (e.g. CBCA, ERIC, Education Full 

Text, EditLib) and in related fields (e.g. ABI/Inform Global, Academic Search Complete). In addition, 

theses and dissertations were searched (e.g., ProQuest Digital Dissertations and Theses) as well as 

international systematic review organizations (e.g., Campbell Collaboration, EPPI Centre). 
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Inclusion/Exclusion Criteria  

In order to be included in this meta-analysis, primary studies must have: 1) been publicly available (or 

archived); 2) been conducted in a formal undergraduate-level (i.e., first years of university) post-secondary 

educational settings, and address any of the following science subject matters: Biology, Chemistry, Physics, 

Geology or Psychology (Clinical and Experimental); 3) contained legitimate measures of academic 

achievement (i.e., instructor-made/researcher-made, standardized); 4) contained at least two groups of 

students receiving different instructional strategies/practices that could be compared as either more or less 

S-C instruction; 5) included course content and outcome measures that were compatible in the groups that 

form these comparisons; 6) contained sufficient descriptions of major instructional events that occurred in 

all instructional conditions; 7) fulfilled the requirements for either experimental (RCTs) or high-quality 

quasi-experimental design (QEDs); and 8) contained sufficient statistical information for accurate effect 

size extraction. 

 

Outcome Measures 

All types of objective measures of academic achievement were considered. This included both 

standardized and non-standardized instructor/research-made assessment tools, as well as both cumulative 

final examination grades, and averages of several performance tasks covering various components of the 

course/unit content. Self-assessments were excluded, as were attitudinal and behavioral measures. 

 

Types of Interventions 

The intervention in question (treatment condition) was considered to be any combination of 

instructional events that was rated higher in S-C qualities than a comparison (control) condition. As such, 

the phenomenon being investigated in this meta-analysis is not an intervention in the typical sense as it is 

used in the experimental literature. In this case, it is a set of instructional practices that have been rated 

along a continuum from predominantly T-C to predominantly S-C via ratings on the four instructional 

events (i.e., dimensions) presented earlier: Pacing, Teacher’s Role, Flexibility, and Adaptation.  

Subsequently, teaching and learning were deconstructed according to the events associated with them. 

Therefore, a more S-C learning environment is one in which students play a more central role in the conduct 

of instructional events, and a more T-C learning environment is one where instructional events are 

dominated by instructors. As a result, any classroom research study, regardless of the intervention being 

investigated, is eligible for inclusion as long as there is sufficient information provided as to what each 

participating group did, including the control condition. 

 

Primary Predictor Variables 

Two experienced reviewers, working independently, coded every participating group in each study 

from 1 (mostly T-C) to 5 (mostly S-C) on the same four primary predictors of student achievement (i.e., 

effect size-defining dimensions) presented earlier. While we recognize the potential difficulties of High 

Inference Coding (e.g., Cooper, 2017) all reviewers involved in this project had extensive experience gained 

through working on the coding on a similar systematic review, as well as extensive prior training involving 

multiple practice runs on studies previously judged to have been accurately and reliably coded. If there 

were any disagreements in coding, the reviewers and an additional research team member discussed the 

discrepancy until a consensus was reached, while documenting the initial coding in order to establish and 

report independent reliability statistics. This procedure of independent coding, followed by joint discussion 

and appropriate changes to the coding, was employed at all stages of this review including effect size 

extraction and coding fro moderator variables. 

Extracting and Synthesizing Effect Sizes 

Two reviewers, working independently, screened abstracts, assessed full-text documents, and extracted 

d-type effect sizes from each study included. Cohen’s d and its standard error were converted to Hedges’ g 

with bias-corrected standard errors and were analyzed/synthesized using the random effects model in 

Comprehensive Meta-Analysis, Version 3.3.070 (Borenstein et al. 2014). 
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Dealing With Dependent Effects Sizes  

Within the studies that were accepted for inclusion, some contained multiple experiments that used the 

same control condition. If not dealt with these studies could have posed a problem of dependency, resulting 

in a risk of a making a Type II error (i.e., falsely rejecting the null hypothesis). The issue of independence 

of findings in a meta-analysis has been repeatedly named among the most critical aspects of methodological 

quality that can affect the trustworthiness and the applied value of a systematic review (e.g., Cheung, 2019; 

Hedges, Tipton, & Johnson, 2010; Scammacca, Roberts, & Stuebing, 2014).  

To ensure unique representation of data collected from each included sample (not a study, as one study 

may report several independent data sets), the follow approach was followed, where appropriate: 1) out of 

all outcomes possibly reported in any given study, only data representing a category in question was used 

for the effect size extraction and in subsequent analyses; 2) if more than one measure addressed the same 

outcome type within a category, the most representative measure was selected to reflect the treatment effect; 

and 3) if several measures were equally representative of the outcome category in question, then individual 

effect sizes were extracted and averaged to reflect the joint effect of a sequence of instructional events. This 

approach avoids counting samples more than once, and reduces the chances of bias due to dependency. 

 

Coding Instructional Dimensions 

The treatment condition was considered to be any combination of instructional events (i.e., sum of the 

ratings of the dimensions) that is rated higher in S-C qualities than a comparison (control) condition, even 

if it was not the treatment group designated in the original study. Descriptions of the coding categories and 

descriptions of the 1-5 rating criteria are shown in Table 1. 

To arrive at an overall differential score for each dimension within each study, ratings of control groups 

were subtracted from ratings of treatment groups leaving a number indicative of the extent to which 

treatment groups were higher (i.e., positive sign) or lower (i.e., negative sign) than control groups.  

 

TABLE 1 

DESCRIPTION AND CODING DESCRIPTIONS OF FOUR  

INSTRUCTIONAL/LEARNING DIMENSIONS 

 

Dimension Descriptions 

Code Descriptions 

Teacher's Role represents a continuum of a teacher's major responsibilities for organizing/delivering 

instruction/managing classroom activities, etc. 

1) Teacher almost exclusively lectures and is the main source of content. 

2) Provides some guidance, feedback, initiates and supports discussions, etc. 

3) Functions as a guide, coach, tutor, provocateur of thinking. 

4) Functions as a colleague, partner in learning. 

5) Almost exclusively acts as a facilitator of learning. 

Pacing reflects the degree of student control over the time of instruction/ learning and over the 

progression through the course content (i.e., pedagogical flexibility – revisiting/selecting/etc.). 

1) Instruction is highly structured and progresses step‐by‐step; no flexibility is allowed. 

2) Minor degree of either logistical or pedagogical flexibility is available to students. 

3) Program/teacher's control over course progression is balanced with that of students. 

4) Students have a substantial amount of flexibility in course progression. 

5) High degree of flexibility. 
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Flexibility describes the degree of student control over course design, selection, the provision of study 

materials, and the setting up of learning objectives. 

1) No involvement of students (most is determined by the teacher or program/curriculum). 

2) Student involvement in at least one of the components of course planning is limited. 

3) Teachers and students collaborate in the planning, but teacher's role is still dominant. 

4) Teachers and students collaborate in the course planning equally. 

5) High student involvement. 

Adaptability describes the degree to which levels or modifications in instructional process is provided 

to accommodate individual students.  

1) Learning materials, settings, group formation, activities are predetermined and unchanged 

throughout the instruction. 

2) Minor modifications are allowed to learning materials, or group composition. 

3) Elements of either individualized feedback, or role and tasks assignments. 

4) Adapting several instructional components to students’ individual needs, or interests. 

5) High levels of joint adaptability of several components of instruction. 

Note: Adapted from Bernard et al. (2019). 
 

The rating method used belongs to a type described by Cooper (2017) as high-inference, because a 

great deal of training and judgement on the part of coders is required to produce ratings that are consistently 

valid and reliable. The inter-rater agreement rate for the instructional dimensions coding was judged to be 

high with Cohen’s Kappa = 0.89.    

 

RESULTS 

 

These are the results of searches: 1) total search, 9,759 document abstracts (after 1,285 duplicates 

removed, 8,474 documents); 2) after abstract screening, 3,749 documents; and 3) final studies after 

inclusion/exclusion criteria were applied yielded, 101 studies containing 140 individual experiments (effect 

sizes).   

 

Assessment of the Risks of Bias 

Publication Bias 

Assessment of publication bias analysis uses a set of graphical and statistical approaches to help assess 

the adequacy of the corpus of included studies. Observation of the random model funnel plot in conjunction 

with Duvall and Tweedie’s (2000) analytical routine indicated no missing studies from either tail of the 

distribution. The Funnel Plot (Figure 1) indicates that there was no discernable publication bias on the 

negative side of the plot (i.e., left of the mean effect size). The Trim and Fill results suggest a similar pattern 

of inclusiveness.   
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FIGURE 1 

FUNNEL PLOT OF 140 EFFECT SIZES  

(HEDGES’ G – X-AXIS; STANDARD ERROR – Y-AXIS) 

 

 
                       Hedges’ g 

 

Publication date was subjected to an analysis that involves five options (Table 2): 1960-1979; 1980-

1989; 1990-1999; 2000-2009; and 2010-2012. 1960-1979 and 2010-2012, all produced non-significant 

results (p = 0.45 and p = 0.12). The years 2000-2009 produced a statistically significant moderate effect 

size (g‾ = 0.34) from the largest sample of effect sizes (k = 80 out of 140). While 1980-1989 produced the 

highest effect size (g‾ = 0.65), it only contained k = 12 out of the possible 140 effect sizes. The overall model 

produced a statistically significant result (Table 2). In spite of these difference, there was no linear effect 

across publication date, treated as an integer-level variable in meta-regression analysis (i.e., Q = 0.52, df = 

1, p = .47). 

 

TABLE 2 

PUBLICATION DATE ANALYSIS 

 

Publication Categories k  SE LL UL z-value p-value Q-Bet. df p-value 

1960-1979 9 0.07 0.07 -0.11 0.25 0.75 .45    

1980-1989 12 0.65 0.65 0.28 1.01 3.44 .001    

1990-1999 20 0.16 0.16 -0.00 0.32 1.96 .05    

2000-2009 80 0.35 0.49 0.34 0.53 8.95 < .001    

2010-2012 19 0.15 0.12 -0.09 0.39 1.24 .12    

Total between  21.54 4 < .001 

 

Sensitivity Bias Analysis 

Sensitivity analysis seeks to determine if effect sizes, especially at the upper and lower ends of the 

distribution (where higher and lower effect sizes are sometimes paired with anomalously large sample sizes), 

have any undue influence on the overall random effects outcomes (Borenstein et al., 2009). Table 3 shows 

the six highest and six lowest effect sizes and their overall influence when they are systematically removed 

 g
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from the distribution and the effects are recalculated (i.e., one study removed, as described below). The 

overall procedure was conducted using the software Comprehensive Meta-Analysis. 

In Table 3, Column 1 is the Study Name and Date of Publication. Column 2 is the actual calculated g 

for each of the six highest and six lowest effect sizes. Columns 3 through 8 are the means, standard errors, 

confidence intervals, and the corresponding z-value and p-value when each study is removed and the 

statistics recalculated. Column 9 is the relative weight that is applied under the random model. Higher 

weights produce more influence than lower weights.  

There appear to be no anomalous results across the 12 studies. This suggests that there is little or no 

‘effect size by sample size bias,’ at least at the extremities. This does not mean that there is no bias within 

the remaining 128 studies, but it is likely that if bias is present in smaller effect size studies, the overall 

results will not be as affected as it would in these 12 studies. As a result of this analysis, no effect sizes 

were removed as outliers and no study was Winsorized (i.e., given the value of the next highest or lowest 

effect).  

 

TABLE 3 

SENSITIVITY ANALYSIS (RANDOM EFFECTS) 

 

Study Names 
Actual 

g 

One Study Removed Relative 

Weight 
 SE LL UL z p 

Wozniak2012 2.30 0.35 0.04 0.26 0.42 8.52 .00 0.14 

Okebukola1988-2 1.99 0.34 0.04 0.26 0.42 8.51 .00 0.20 

Doymus2008 1.73 0.34 0.04 0.26 0.41 8.46 .00 0.73 

Okebukola1988-4 1.66 0.34 0.04 0.26 0.41 8.46 .00 0.42 

Okebukola1988-2 1.51 0.34 0.04 0.26 0.41 8.49 .00 0.34 

Folconer1988 1.45 0.33 0.04 0.26 0.41 8.44 .00 0.64 

128 Studies not shown. 

Swanson1990 -0.48 0.35 0.04 0.27 0.43 9.04 .00 0.35 

Kapp2011 -0.69 0.35 0.04 0.27 0.42 8.65 .00 0.34 

Hulshof2005 -0.72 0.35 0.04 0.27 0.43 8.84 .00 0.35 

Reinhardt2012 -0.85 0.35 0.04 0.27 0.43 8.83 .00 0.35 

Martin2009-2 -1.01 0.37 0.04 0.27 0.42 8.73 .00 0.35 

Martin2009-1 -1.04 0.38 0.04 0.27 0.43 8.76 .00 0.35 

Overall (k = 140) 0.34 0.34 0.04 0.26 0.42 8.58 0.00 100.00 

 

Research Design Bias Analysis  

Both experimental designs, RCTs (i.e., randomized control trials where groups are randomized to 

conditions), and QEDs (i.e., quasi-experimental designs where group membership is not random) were 

included in this meta-analysis. By our definition, “high-quality” QEDs are groups not randomized to 

conditions but possessing some indicator of group equivalence (i.e., pretest). Typically, RCTs produce 

lower average effect sizes than do QEDs. A significant difference between these groups of studies may 

indicate that they are too different and should not be combined into an overall average effect size. Table 4 

shows the results of this analysis of group differences. They indicate a nearly significant difference between 

the groups of studies (p = .06). The designs, however, were deemed close enough so as to suggest only 

minimal risk.   

 g
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TABLE 4 

RESEARCH DESIGN BIAS ANALYSIS 

 

Codes k  SE LL UL z p Q-B df p 

QEDs 84 0.41 0.05 0.31 0.50 8.10 < .001    

RCTs 56 0.25 0.07 0.12 0.38 3.68 < .001    

Total between  3.54 1 .06 

 

Judging by the outcomes of these analyses, we conclude that the risk of bias in terms of publication 

inclusion, sensitivity of the collection, and the difference between outcomes from RCTs and QEDs is 

minimal.    

 

Overall Analysis 

Does more S-C instructional approaches to undergraduate-level science learning result in higher 

achievement outcomes than less S-C (more T-C) approaches? Answering this question (Table 5) involved 

synthesizing 140 effect sizes, each representing the difference between a designated treatment condition 

(i.e., predominantly S-C instruction) and a designated control condition (i.e., predominantly T-C 

instruction). The complete analysis is shown in Table 5. The average weighted of g‾ = 0.34, SE = 0.04, p 

< .001 indicates a modest positive effect for S-C learning conditions. The distribution is significantly 

heterogeneous under the fixed effect model (QT = 618.13, df = 140, p = .001, I2 = 0.77, = 0.15). This is 

an interesting finding in that it does not unambiguously support either form of instruction to the exclusion 

of the other, although it does suggest a modest learning advantage for students being given more 

involvement and freedom in their own learning processes. 

 

TABLE 5 

OVERALL RESULTS 

 

Model k  SE LL UL z p 

Random effects 140 0.34 0.02 0.24 0.43 8.70 < .001 

 Model Between-group Heterogeneity  

 Fixed Effect Q df p         I2 Tau2  

Total Collection 606.84 139 < .001 0.77 0.15  

 

Analysis of Demographics and Instructional Characteristics 

Four categories of demographic moderator variables were coded. These were Subject Matter (Table 6-

a), Length of Courses/Sessions (6-b), Presence and Absence of Technology (6-c), and Table 6-d, Average 

Class Size, treated as an ordinal variable and conducted in simple meta-regression.  

In the analysis of Subject Matter, the results from ‘Psychology versus Chemistry’ is the most likely 

contributor to the significant difference in effects among the variable levels.  

In Table 6-b, short or medium length courses appear to perform better than longer courses, even though 

the overall effect is not significant (p = .28).  

The results from the presence or absence of technology shown in Table 6-c is complex and non-intuitive. 

Normally, in the educational technology literature, the presence of technology in the experimental condition 

produces somewhat higher average effect sizes compared to the control condition (Schmid, Bernard, 

Borokhovski, Tamim, Abrami, & Surkes (2014). However, in these results, the presence and absence of 

technology in both treatment and the control are about equal, and are higher than when technology is present 

 g
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in both conditions. These results may be indicative of the wide range of technologies used over the long 

timespan of studies (1960s to 2000s) represented in this meta-analysis.  

In Table 6-d, average class size is almost, but not quite a significant predictor of achievement results. 

 

TABLE 6A-B-C-D 

CODED DEMOGRAPHIC CHARACTERISTICS (MODERATORS) OF THE SAMPLE 

 

Categories k  SE LL UL z p Q-B df p 

a) Subject Matter (k = 140) 

Biology 47 0.31 0.06 0.20 0.42 5.56 .00    

Chemistry 24 0.58 0.09 0.40 0.76 6.26 .00    

Geology 5 -0.31 0.10 -0.55 0.45 -0.19 .84    

Physics 37 0.45 0.08 0.2 0.61 5.27 .00    

General Science 7 0.22 0.12 0.45 -0.63 1.20 .23    

Psychology 20 0.06 0.09 -0.12 0.24 0.65 .51    

Total between  20.73 5 .001 

b)  Length of Courses/Sessions (k = 137; Missing = 3) 

Shorter than a 

semester 
83 0.34 0.057 0.28 0.61 5.27 .00    

Semester 46 0.39 0.06 0.27 0.51 6.54 .00    

Longer than a 

semester  
7 0.05 0.20 0.20 0.42 5.56 .00    

Total between  3.73 2 .28 

c) Presence (Yes) and Absence (No) of Technology (k = 140) 

Yes * Treat. /Yes ** 

Cont.  
54 0.19 0.06 0.08 0.30 3.34 .00    

Yes Treat. /No Cont. 21 0.49 0.11 0.27 0.71 4.39 .00    

No Treat. /No Cont. 65 0.42 0.06 0.31 0.54 7.12 .00    

Total between  10.30 2 .01 

* Treat. = Treatment; ** Cont. = Control. Note: There were k = 0 for category No Treat. /No Cont. 

d) Average Class Size (k = 140) 

Covariate Coefficient SE LL UL z p VID 

Intercept 0.42 0.05 0.30 0.50 8.02 .00 1.61 

Class Size (avg.) -0.0009 0.0005 -0.002 0.0001 -1.81 .07 1.00 

Model: Q = 2.71, df = 1, p < .10 
 Goodness of Fit: tau2= 0.15, tau = 0.39, I2 = 76.1 Q = 583.35, df = 1, p 

< .00001 

 

Analysis of Instructional Dimensions 

Which primary predictor variable(s) or dimension(s) of student achievement predict effect sizes? 

Results indicated that the overall set of predictors, tested as a group (i.e., Teacher’s Role, Pacing, 

Adaptation, and Flexibility), was not significant (Q = 3.00, df = 4, p = 0.56). However, when tested 

separately in simple regression the dimension of Flexibility (Table 7), produced a significant negative result. 

This result suggests a tendency towards less flexibility in the ways that are suggested in Table 1 for T-C 

instruction. 

 g
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TABLE 7 

META-REGRESSION – CODED INSTRUCTIONAL DIMENSION: FLEXIBILITY 

 

Covariate Coefficient SE LL UL z p VID 

Intercept 0.39 0.47 0.30 0.48 8.35 .00 1.35 

Flexibility -0.09 0.05 -0.19 0.02 -1.93 .05 1.00 

Model: Q = 3.73, df = 1, p = .05  Goodness of Fit: tau2= 0.15, tau = 0.39, Q = 606.13, df = 138, p < .001 

 

Combination of Dimensions and Other Coded Variables 

The final analysis involves the combination of two interval variables, Flexibility and Class Size, and 

two categorical variables (i.e., dummy-coded variables), Subject Matter and Technology. The complete 

model (Table 8) was significant (Q-Between [predictors] = 42.24, df = 8, p = < .0001, R2 = 0.26 or 26%) 

and also significantly heterogeneous (Q-Between [studies] = 430.65, df = 132, p = < .0001, I2 = 69.35%, 

tau2 = 0.01). Individually, each predictor in the model was significant (some positive and some negative).  

Analysis of the dimensions alone yielded only one result – flexibility. Course Length, one of the coded 

moderator variables, was not significant in the complete model and thus was excluded. 

 

TABLE 8 

META-REGRESSION COMPLETE MODEL – CODED INSTRUCTIONAL DIMENSION 

FLEXIBILITY PLUS ‘CLASS SIZE,’ ‘SUBJECT MATTER,’ AND ‘TECHNOLOGY USE’ 

 

Covariates Coefficient SE LL UL z P VID 

Intercept 0.06 0.10 -0.14 0.25 1.53 .13 8.78 

Flexibility -0.11 0.04 -0.20 -0.03 -2.60 .009 1.123 

*Class Size  

Small -0.10 0.12 -0.35 0.14 -0.82 .41 1.12 

Large -0.04 0.09 -0.22 0.15 -0.38 .71 1.17 

Very Large -0.29 0.95 -0.47 -0.10 -3.03 .003 1.14 

**Subject Matter 

Biology 0.26 0.11 0.05 0.47 2.47 .01 2.29 

Chemistry 0.49 0.13 0.24 0.75 3.80 .0001 2.16 

Geology -0.18 0.22 -0.60 0.25 -0.82 .42 1.37 

Physics 0.38 0.12 0.15 0.61 3.24 .001 2.31 

**Technology Use: 

Treat. Yes/Control No 0.28 0.11 0.06 0.49 2.56 .01 1.51 

Treat. No/Control Yes -1.00 0.40 -1.78 -0.21 -2.49 .01 1.09 

Treat. No/Control No 0.19 0.08 0.03 0.36 2.13 .02 1.51 

Class Size (overall): Q = 9.38, df = 3, p = .02. 

Subject Matter (overall): Q = 23.94, df = 4, p = .0001. 

Technology Use (overall): Q = 15.92, df = 3, p = .001. 

Model: Q = 58.98, df = 11, p < .000; R2 

(analog) = 0.36 or 36% 

Goodness of Fit: tau2 = 0.09, I2 = 66.49%, Q = 381.93, df = 

128, p < .00.  

Reference Categories: *‘Average’ **‘Psychology’ **‘Treat. No/Cont. No’. 

 

Limitations and Potential Biases in the Review Process 

The main limitation and potential bias in the overall review process is the use of high-inference coding 

(Cooper, 2017). As outlined in the Methods section, the designation of treatment and control in each 

individual study is not directly derived from the specific designations, but rather determined by two 
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reviewers working independently and basing their decisions on a set of judgments on each of the four 

instructional dimensions (Pacing, Teacher’s Role, Flexibility, and Adaptation). In some cases, this required 

reversing the group designations. It is important to note in considering the accuracy of coding, and as 

explained in the Methods section, reviewers received extensive training for this task, which included 

multiple practice runs on studies previously judged to have been accurately and reliably coded. The same 

two reviewers also had extensive experience from working on the coding for the several other systematic 

reviews. The inter-rater agreement rate for the dimensions coding was judged to be high (Cohen’s kappa 

= .89). 

While this form of high-inference coding does result in greater risk of bias than the standard 

treatment/control designation (i.e., low-inference coding), for the purposes of this systematic review, it is 

deemed to be the only way to advance the research literature beyond relatively simple comparisons between 

‘either this or that’ like the standard treatment/control designations that populate the educational research 

literature. 

 

DISCUSSION 

 

Overall, this systematic review provides evidence that S-C instruction may lead to increases in 

undergraduate level science students’ achievement outcomes. This is seen by the medium sized overall 

random effects average of g‾ = 0.34, based on average effect sizes that are structured to run in a T-C (smaller) 

to S-C (larger) direction. However, the argument is weakened by the fact that a significant linear 

relationship between degree of S-C and achievement was not found (𝛽 = 0.01, SE = 0.01, z = 0.03, p = 

0.40). As a result, the simple argument that increasing the amount of S-C learning in an undergraduate level 

science course will in turn increase student achievement cannot be easily justified. The relationship between 

S-C learning and student achievement in this particular instructional setting is more nuanced, and factors 

such as type and degree of S-C learning, as well as combinations of S-C learning and combinations of S-C 

and T-C learning, likely have their roles. 

When considering instructional settings in which undergraduate science courses take place, 

explanations for the results of the primary predictor variable analyses can only be inferred. The fact that 

Pacing, Teacher’s Role, and Adaptability were all non-significant in both meta-regression and mixed 

moderator variable analysis, could be indicative of the expectation that the typical classroom structure of 

undergraduate chemistry, biology, physics, geology, and psychology courses, are simply more T-C based. 

Courses tend to be larger, particularly in the more introductory levels, and they also tend to be 

predominantly lecture-based. Courses are often structured around the officially recognized textbooks, and 

professors who use them are sometimes provided pre-produced lecture slides or notes supplied by the 

manufacturer of the textbook. As a consequence, there may be a certain hesitance at this level of education 

that resists smaller class sizes, more student involvement, and deviation from a lecture-based culture. In 

short, the typical undergraduate-level science course might not always afford significant opportunities for 

the implementation of more S-C based instructional practices. There is no direct evidence of this in these 

data, but it is important to note that the majority of the studies in this systematic review did not score higher 

than +2 on each of the four instructional dimensions, with most scoring a differential score of between 0 

and +2. This may suggest that efforts to implement S-C practices, especially in undergraduate science 

course, has been only minimally successful. 

While the operationalization of Flexibility in the Methods section also has aspects that would enable it 

to be rated more on the T-C side of the spectrum in undergraduate level science settings, there are certain 

aspects of the science subject matters chosen for this meta-analysis that could help explain why Flexibility, 

of the four dimensions, was the only significant (albeit negative) predictor of effect size. Flexibility in part 

reflects the degree of student participation in course design, selection of course materials, and the 

determination of learning objectives. The laboratory components of science courses such as chemistry, 

biology, and physics could provide the particular instructional setting that reflects an increased degree of 

student involvement and control in this aspect. Labs are often a mandatory component of undergraduate 

level science courses, especially in more introductory courses, and within labs students have options of 
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more flexibility than students within class settings. Of course, students are still working within the overall 

parameters of the length of time allotted to finish and submit work, and labs are still within the overall, pre-

established course syllabus. However, different students (or students and their partners, if it is paired work) 

can approach work in different ways depending on their individual preferences and strategies. While a 

laboratory component could be conducive to increased Flexibility, other aspects of a science course setting 

(i.e., class size, lecture-based, rigid syllabus) could result in that same instructional dimension exemplifying 

T-C components. 

Studies in which both participating groups used technology (g‾ = 0.19) were significantly outperformed 

by studies in which either both groups did not use technology (g‾ = 0.40) or the treatment group did and the 

control group did not (g‾ = 0.48). Interestingly, the degree of technology use across degrees of Flexibility 

was only significant (p = 0.03) when both groups did not use technology, and there was a negative 

relationship. 

The fact that settings in which only the treatment group used technology were not significantly different 

than settings in which both groups did not use technology could be due to the type of technology being 

used. The technology found in typical undergraduate level science instructional settings includes 

PowerPoint slides with the occasional video during lectures, as well as some form of an online course 

management system, such as Moodle or Blackboard. A meta-analysis conducted by Schmid, Bernard, 

Borokhovski, Tamim, Abrami, & Surkes (2014) on the effects of technology use on achievement in post-

secondary education looked into the different pedagogical uses of technology, and found that technological 

applications that simply present information in an alternative form, such as PowerPoint, yielded small 

average effect sizes, in the range of 0.10 > g‾ < 0.20 (i.e., what would be considered ‘trivial’ in the social 

sciences). The fact that this particular application of technology does not provide much of an advantage in 

terms of achievement outcomes could be an explanation as to why no significant differences between 

instructional settings with no technology and settings with only treatments using it exist. However, the 

above does not explain why achievement outcomes in instructional settings, in which both groups used 

technology, is significantly lower than when at least one group (i.e., at least the control group) did not use 

it. If this particular form of technology use does incur benefits, albeit small, as reported by Schmid et al. 

(2014), then why does adding technology to the control group significantly diminish effect size so much?  

Another angle from which to approach the relationship between technology use and effect size is by 

considering how the technology supports the selected pedagogy. Does the pedagogical use of technology, 

mentioned above – alternative forms of presenting information – do more to support S-C learning, or T-C 

learning? Is this interaction further complicated by the nature of the content and learners’ prior knowledge? 

In summary, while the overall model suggests that S-C learning does result in modest student learning 

achievement improvements ( g‾  = 0.34), the effects are somewhat confounded when considering the 

instructional dimension of Flexibility, as well as when considering the potential impact of laboratory 

components in science courses such as biology, physics, and in particular chemistry. It is important to 

remember that the discussion about labs is merely speculation – the specific course content, and syllabi, of 

the science courses in the studies used for this systematic review were not examined. It is also important to 

remember that a consideration of how the pedagogy itself in these instructional settings influence student 

achievement outcomes, as well as how factors such as technology support the selected pedagogy, is 

warranted in the quest to better understand the relationship between instructional settings and student 

learning achievement outcomes. 
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