Effectiveness of Blended Learning in Biomedical Engineering:
A Meta-Analysis

Yaroslav Tsekhmister
National Academy of Educational Sciences of Ukraine

The goal of this meta-analysis is to assess the effectiveness of blended learning in biomedical engineering. To that end, the PubMed and Medline databases were combed for relevant research through January 2022, and the eligible papers were picked using a rigorous PRISMA-based selection approach. Blended learning was compared to traditional teaching approaches in all of the research considered. As a consequence of the present search, eighteen research articles with a total of 3097 participants adopting blended learning for biomedical engineering education were discovered. Two studies were included from each of the following countries including Australia, Brazil, Germany, Spain and USA. While, one study from China, Denmark, France, KSA, Malaysia, Serbia, Turkey and United Kingdom was included. The results of a meta-analysis employing random effects models revealed a significant difference between all blended learning and conventional learning methods [MD and its 95% CI were 2.36 (0.94, 3.78)]. The findings advised that biomedical engineering education stakeholders use an innovative teaching strategy based on digital pedagogies.

Keywords: blended learning, biomedical engineering, meta-analysis, digital pedagogies

INTRODUCTION

The growing number of students enrolled in Biomedical Engineering courses necessitates the rationalization of teaching procedures, which includes the use of e-learning, distant learning, and self-assessment technologies. In the recent decade, the rapid growth of e-learning systems has opened up new frontiers for re-solving these difficulties. Students can train separately without direct personal supervision using modern e-learning tools. Physiological processes as well as the operation of biomedical devices such as a pacemaker are depicted in interactive animations. Due to the nature of Biomedical Engineering, presence activities such as laboratory exercises or specialized seminars are required. Blended learning mixes online learning with in-person activities to create a long-term platform for effective mentorship of Biomedical Engineering students (Kožuško et al., 2012; Marrhich et al., 2021). Biomedical Engineering students would be able to efficiently generate and share supportive educational materials and learning resources in an online learning environment that is both efficient and interesting for students. Technologies that enable online education by introducing or in-creasing the possibilities of synchronous and asynchronous contributions may also assist students in learning in a face-to-face classroom: tasks that can be completed before, during, or after class (Hrastinski, 2008; Murray et al., 2014). Blended learning, on the other hand, claims to improve classroom learning while simultaneously reinventing the learning environment to give students greater autonomy (Smith & Hill, 2019). Students should be allowed to study
more independently of time and place, as well as choose their own subject and pace of learning. The major concern is whether online tools can substitute for some classroom time while maintaining educational quality and performance (Owston & York, 2018). This is especially important in light of the COVID-19 outbreak. Many universities are considering using an online learning environment to replace part or all of their classroom training, both now and in the future (Peters et al., 2022; Saichaie, 2020). Appropriate use of technology can help us learn more by helping us to more effectively carry out our current activities or invent new ones (Tsekhmister, 2021). The use of a blended learning approach to teach biomedical engineering allows students to combine a variety of online asynchronous learning modalities with face-to-face learning and teaching, potentially promoting active, student-centered learning and the development of important problem-solving skills. As a result, educational institutions all over the world are under increasing pressure to use current Information and Communication Technologies to teach students and assist them in gaining the knowledge and skills they will need in the twenty-first century. The purpose of this research was to see how successful blended learning is in bio-medical engineering.

METHODOLOGY

We searched PubMed and Medline databases in January 2022 for this meta-analysis, which included the most recent literature on randomized controlled trials and cohort studies for the effectiveness of blended learning in biomedical engineering. The search criteria employed were biomedical engineering, higher education, randomized control trials, cohorts, and practical experiences. During the first search, we also searched through the reference tracking of bibliographies and manual searches to see if there were any additional studies that were relevant. Titles and abstracts were separately reviewed for inclusion by the authors.

The studies were identified using the PRISMA method, and they were only considered qualified if they satisfied the inclusion criteria (Fig. 1). After removing material that was obviously unconnected, the authors separately examined the study abstracts and full texts, deciding which publications to include based on the inclusion and exclusion criteria (Table 1). Any issues or conflicts were discussed and resolved by all writers.

FIGURE 1
THE PRISMA FLOW CHART OF THE LITERATURE SELECTION FOR THE META-ANALYSIS
TABLE 1
CRITERIA FOR THE INCLUSION AND EXCLUSION OF STUDIES IN THE META-ANALYSIS

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original article</td>
<td>Reviews</td>
</tr>
<tr>
<td>Randomized control trials</td>
<td>Meta-analysis</td>
</tr>
<tr>
<td>Cohort studies</td>
<td>Systemic reviews</td>
</tr>
<tr>
<td>Innervation measures</td>
<td>Books/documents</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>Studies not related to biomedical engineering</td>
</tr>
</tbody>
</table>

Data Analysis
Review Manager 5.4 was used to examine the retrieved data with a 95% confidence interval. The heterogeneity among the studies was determined using the random model. Forest plots were created in order to determine the total cumulative impact. Because we predicted heterogeneity among the papers included in the meta-analysis, we used a random effects model.

FINDINGS / RESULTS
The PRISMA flowchart in Fig. 1 depicts a simplified research selection procedure. Table 2 shows the findings of the current search, which reveal eighteen researches with a total of 3097 participants using blended learning method.

TABLE 2
CHARACTERISTICS OF INCLUDED STUDIES PRESENTING STUDY DESIGN AND COUNTRY

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ulrich et al., 2021)</td>
<td>Denmark</td>
<td>360° video used as e-learning</td>
</tr>
<tr>
<td>(Elzainy et al., 2020)</td>
<td>KSA</td>
<td>e-learning and online assessment</td>
</tr>
<tr>
<td>(Bartlett & Smith, 2020)</td>
<td>USA</td>
<td>Blended learning approach with mobile app</td>
</tr>
<tr>
<td>(Lozano-Lozano et al., 2020)</td>
<td>Spain</td>
<td>Blended learning approach with Ecofisio interactive website/app</td>
</tr>
<tr>
<td>(Jarrett-Thelwell et al., 2019)</td>
<td>USA</td>
<td>Traditional and integrative approach to teaching</td>
</tr>
<tr>
<td>(Shimizu et al., 2019)</td>
<td>Japan</td>
<td>Blended problem-based learning</td>
</tr>
<tr>
<td>(Marchalot et al., 2017)</td>
<td>France</td>
<td>Blended learning course and flipped classroom</td>
</tr>
<tr>
<td>(McCutcheon et al., 2018)</td>
<td>United Kingdom</td>
<td>Online learning versus blended learning</td>
</tr>
<tr>
<td>(Kho et al., 2018)</td>
<td>Malaysia</td>
<td>Blended learning</td>
</tr>
<tr>
<td>(Rocha et al., 2017)</td>
<td>Brazil</td>
<td>Educational video game (quiz type)</td>
</tr>
<tr>
<td>(da Costa Vieira et al., 2017)</td>
<td>Brazil</td>
<td>Blended learning approach with e-learning classroom</td>
</tr>
<tr>
<td>(Noll et al., 2017)</td>
<td>Germany</td>
<td>Augmented reality and blended learning</td>
</tr>
<tr>
<td>(Zhan et al., 2017)</td>
<td>China</td>
<td>Blended learning and pure e-learning</td>
</tr>
<tr>
<td>(Milic et al., 2016)</td>
<td>Serbia</td>
<td>Blended learning model</td>
</tr>
</tbody>
</table>
A total of 18 studies were selected for this meta-analysis those reported in various regions of the world as presented in Fig. 2. Two studies were included from each of the following countries including Australia, Brazil, Germany, Spain and USA. While one study from China, Denmark, France, KSA, Malaysia, Serbia, Turkey and United Kingdom was included.

The blended learning was compared to traditional learning approaches in all of the research considered. When compared to conventional learning, we aggregated seven research with a total of 2010 individuals who used online blended learning. The meta-analysis using random effects models showed significant difference in online blended learning and traditional learning [MD and its 95% CI were 3.13 (0.81, 5.45)] as showed in Fig. 3. This result showed statistically significant (P=0.008) difference between blended learning and traditional learning in Biomedical Engineering. A significant heterogeneity was observed among studies (I²=99%).

The test of asymmetry funnel plot indicated publication bias among studies as presented in Fig. 4 and suggested that blended learning was more effective than traditional learning.

Further, for studies using digital blended studies (n=8) a total of 748 participants were included. The meta-analysis using random effects models showed non-significant difference in digital blended learning and traditional learning [MD and its 95% CI were 0.44 (-0.58, 1.46)] as showed in Fig. 5. These results showed no statistically significant (P=0.39) difference between digital blended learning and traditional teaching in higher education.

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fernández-Lao et al., 2016)</td>
<td>Spain</td>
<td>Blended learning approach with interactive/app (Ecofisio)</td>
</tr>
<tr>
<td>(Küçük et al., 2016)</td>
<td>Turkey</td>
<td>Mobile augmented reality</td>
</tr>
<tr>
<td>(Nicklen et al., 2016)</td>
<td>Australia</td>
<td>Remote-online challenge based learning</td>
</tr>
<tr>
<td>(Lehmann et al., 2015)</td>
<td>Germany</td>
<td>Blended learning with web-based virtual patients</td>
</tr>
<tr>
<td>(Ilic et al., 2015)</td>
<td>Australia</td>
<td>Blended learning education</td>
</tr>
</tbody>
</table>

FIGURE 2
COUNTRY WISE DISTRIBUTION OF SELECTED STUDIES PRESENTING BLENDED LEARNING IN BIOMEDICAL ENGINEERING

![Chart showing country-wise distribution of selected studies](chart)

The chart above shows the distribution of selected studies across various countries involved in the research. The countries included are Australia, Brazil, China, Denmark, France, Germany, KSA, Malaysia, Serbia, Spain, Turkey and United Kingdom. Each country is represented with a specific percentage based on the number of included studies.
FIGURE 3
FOREST PLOT PRESENTING EFFECT OF ONLINE BLENDED LEARNING WHEN COMPARED TO TRADITIONAL METHODS

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Online Blended</th>
<th>Traditional Learning</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile 2015</td>
<td>6.1 2.1</td>
<td>73 0.3 1.6</td>
<td>74 16.1% 1.03 [1.17, 2.43]</td>
<td></td>
</tr>
<tr>
<td>Khe 2018</td>
<td>15 1.75</td>
<td>15 1.81</td>
<td>15 16.1% 4.03 [3.73, 5.37]</td>
<td></td>
</tr>
<tr>
<td>Mentchad 2016</td>
<td>232 18.73</td>
<td>54 2.15</td>
<td>273 16.2% 17.00 [8.37, 24.63]</td>
<td></td>
</tr>
<tr>
<td>McCutcheon 2018</td>
<td>4.2 1.43</td>
<td>69 1.51</td>
<td>57 16.8% 9.69 [6.15, 12.23]</td>
<td></td>
</tr>
<tr>
<td>Milik 2016</td>
<td>7.68 1.3</td>
<td>169 7.51</td>
<td>437 16.4% 9.37 [8.00, 10.75]</td>
<td></td>
</tr>
<tr>
<td>Shimizu 2019</td>
<td>69 8</td>
<td>72 10.2</td>
<td>24 10.4% 1.46 [0.93, 2.03]</td>
<td></td>
</tr>
<tr>
<td>Zhang 2017</td>
<td>53.88 0.84</td>
<td>445 0.78</td>
<td>485 16.3% 4.79 [4.78, 4.88]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 823 1187 100.3% 3.13 [0.81, 5.45]
Heterogeneity: Tau² = 0.23, Chi² = 1127.01, df = 6 (P < 0.00001), I² = 99%
Test for overall effect: Z = 2.64 (P = 0.008)

FIGURE 4
FUNNEL PLOT OF ONLINE BLENDED LEARNING VERSUS TRADITIONAL LEARNING
Similarly, we also pooled four studies including a total of 339 participants that used virtual reality blended method in their learning when compared to traditional learning. The meta-analysis using random effects models showed non-significant difference in virtual reality blended learning and traditional learning [MD and its 95% CI were 2.29 (0.39, 4.19)] as showed in Fig. 6. This result showed statistically non-significant (P=0.02) difference between virtual reality blended learning and traditional teaching.

The overall effect of blended learning for selected studies (n=18) in Biomedical Engineering was also determined. The meta-analysis using random effects models showed significant difference among all digital pedagogies and traditional learning [MD and its 95% CI were 2.36 (0.94, 3.78)] as showed in Fig. 7. This result showed statistically significant (P=0.05) difference between blended learning and traditional learning.
FIGURE 7

DISCUSSION

The advantages of e-learning and blended learning differ depending on the audience. All university students prefer flexibility. Students value the ability to learn with well-known instructors at their leisure, when and when they wish. Presence activities are required for training using technical devices. If they are supported by an e-learning tutorial, they can be implemented more efficiently. The e-learning system, particularly the self-assessment components for classifying pupils and selecting an appropriate level of difficulty, needs to be improved. It enables for the efficient identification of student collaborators who are especially well-suited to research initiatives. A greater use of e-learning and blended learning at all levels of the educational process is a necessary condition for success in top universities. Digital learning offers various benefits, including enabling students to engage in self-directed learning (Huynh, 2017) and keeping curriculum up to date (Ruiz et al., 2006). The goal of this study was to see the effectiveness of blended learning in Biomedical Engineering. The meta-analysis using random effects models showed significant difference in online blended learning and traditional learning [MD and its 95% CI were 3.13 (0.81, 5.45)]. This result showed statistically significant (P=0.008) difference between blended learning and traditional learning in Bio-medical Engineering. A significant heterogeneity was observed among studies (I²=99%). In one meta-analysis, self-produced films outperformed traditional classroom education on a practical skill in a cervical spine scenario by a statistically significant margin (Maloney et al., 2013; Maloney et al., 2013). This conclusion needs to be validated in a bigger meta-analysis due to the small number of participants. When compared to practical classroom instruction alone, combining practical classroom teaching with

262 Journal of Higher Education Theory and Practice Vol. 23(5) 2023
students’ self-produced videos practicing practical skills may encourage greater skill development (Li, 2022). The capacity to relate transferred information to practical consequences and student achievement is one reason for this impact. This corresponds to mobile learning, which focuses on students’ newly acquired information and abilities (Merrill, 2022; Jamaris et al., 2021). Using self-produced films as a complement to practical classroom instruction also allows teachers, tutors, and supervisors to provide feedback on students’ clinical performance. Furthermore, self-produced films allow for peer-to-peer learning by sharing and discussing the outcomes of the videos, as well as the opportunity for self-reflection as part of the process of building professional clinical abilities. In terms of efficacy, the meta-analysis found a statistically significant improvement in learning outcomes for blended learning [MD and its 95% CI were 2.36 (0.94, 3.78)]. These findings are consistent with a comprehensive evaluation of 12 research that found considerable increase in nursing students’ self-directed learning skills (Liu et al., 2018). A study of 24 research in health professions education, on the other hand, found no convincing evidence that the flipped classroom improved academic outcomes (Evans et al., 2019). The flipped classroom model’s or blended learning options have the ability to encourage and engage students in pre-class learning activities, develop self-regulatory abilities, and increase the flexibility and transparency of the learning process (Låg & Sæle, 2019). In addition, in-class activities need engaged students and provide a greater chance for students to integrate new subject to past knowledge in order to solve issues, which can lead to higher-order thinking. Another option is to get immediate feedback from peers and professors (Merrill, 2022). As a result of these pedagogical options, we may infer that the flipped classroom approach has the potential to improve students’ learning results (Låg & Sæle, 2019). Further, for studies using digital blended studies (n=8) a total of 748 participants were included. The meta-analysis using random effects models showed non-significant difference in digital blended learning and traditional learning [MD and its 95% CI were 0.44 (-0.58, 1.46)]. These results showed no statistically significant (P=0.39) difference between digital blended learning and traditional teaching in higher education. The impact of utilizing a mobile app/computer program on practical abilities was shown to be statistically insignificant (Arroyo-Morales et al., 2012; Cantarero-Villanueva et al., 2012). These findings are contradicted by a comprehensive evaluation of 29 research that found mobile learning to be as successful as, if not more effective than, conventional learning (Dunleavy et al., 2019). Students may see how to do practical skills and learn theoretical information through interactive websites/apps since they are adaptable, accessible, and transparent. In general, studies demonstrate that incorporating mobile learning technologies into higher education courses improves student engagement, attentiveness, and learning (Merayo et al., 2018; Ernawati & Ikhsan, 2021). Some risk-biased research might be to blame for the discrepancy in our findings. Similarly, the current meta-analysis, which used random effects models, found no statistically significant difference between virtual reality/simulation and traditional learning [MD and its 95% CI were 1.67 (-0.20, 3.54)].

The blended learning designs were most likely planned didactic learning designs with digital learning technologies and a constructive alignment strategy. Other studies have found greater student involvement, engagement, communication, critical conversations, and student–teacher relationship as a result of these findings (Damşa et al., 2015; Mącznik et al., 2015; Tsekhmister, 2022). It might be advised that medical education stakeholders embrace a new teaching technique based on digital pedagogies. This integration of digital tools generates an effective learning environment and encourages self-learning, which enhances the pedagogical performance of students and teachers.

CONCLUSION

In terms of knowledge and practical skills development, the findings showed that blended learning are either equally or more successful than traditional classroom teaching in higher education. The online blended learning had substantial effects on student learning, according to the meta-analyses. However, bigger controlled experiments are needed to corroborate these findings.
REFERENCES

