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An Instructional Processor has been developed as a design example in an Advanced Digital Systems course. 

The architecture is modelled in VHDL and can be simulated using Xilinx design tools. A basic 

microcontroller is created by adding memory-mapped input/output (I/O). The hardware system can be 

synthesized and implemented on a field programmable gate array (FPGA). The goal of this project was to 

add serial communication capabilities via software and a hardware UART (universal asynchronous 

receiver transmitter). The design allows direct access to the UART data registers (receive and transmit), 

status register (flags), and control register (baud rate). Test programs, written in assembly language, were 

used to verify the communication protocol and timing via VHDL simulation. The FPGA microcontroller 

was able to communicate with serial devices at various baud rates. The UART gives students an in-depth 

look at both the internal details and external interfacing of a real-life system.  
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INTRODUCTION 

 

Teaching digital design involves use of many examples including counters, registers, arithmetic logic 

units, and memory. The design of a computer processor combines these components into an integrated 

digital system. An Instructional Processor has been developed as a design example in an Advanced Digital 

Systems course at The Citadel (Hayne, 2018). The simple architecture provides sufficient complexity to 

demonstrate fundamental programming concepts. The entire system is modeled in VHDL and can be 

simulated to demonstrate operation of the processor. Memory-mapped input/output (I/O) provides the 

external interfaces necessary to demonstrate example microcontroller applications, when synthesized to a 

field programmable gate array (FPGA). 

Serial communication is widely used to connect external devices to computer systems. The digital 

interface, which receives and transmits serial data, is commonly known as a UART (universal asynchronous 

receiver transmitter). The goal of this project was to develop design examples which add serial 

communication capabilities to the Instructional Processor. Students had the opportunity to explore both 

software and hardware UARTs. 

The serial data format uses standard bit timing and framing. One possible implementation of the 

protocol is in software using timing loops and basic bit shifting. Unfortunately, the software UART will be 

limited to half-duplex (only one direction at a time). A full-duplex hardware UART requires interfacing 

with internal processor registers and memory. Available implementation options are also discussed. 
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SOFTWARE UART 

 

The standard format for asynchronous serial data transmission is shown in Figure 1 (Roth & John, 

2008). The beginning of a data byte is indicated by a start bit and the end is framed by a stop bit. Data bits 

are sent least significant bit (LSB) first with an optional parity bit. The number of bits transmitted per 

second is commonly referred to as the baud rate. This rate establishes the timing for each bit. 

 

FIGURE 1 

STANDARD SERIAL DATA FORMAT 
 

 
 

A software UART was created using delay loops to determine bit timing. For a data rate of 9600 baud, 

the required bit time is 104 µs. The FPGA implementation of the Instructional Processor on a BASYS 3 

board uses a 100 MHz system clock (Digilent, 2019) and a known number of clock cycles for each 

instruction. Calculating the timing for each nested loop results in the delay subroutine shown in Figure 2. 

 

FIGURE 2 

ASSEMBLY LANGUAGE DELAY SUBROUTINE 

 

 
 

Implementing the software UART required using pins on two existing memory-mapped I/O ports for 

the received serial data (RxD) and transmitted serial data (TxD). Additional memory data registers were 

used for the receive shift register (RSR) and the transmit shift register (TSR). A receive subroutine was 

written to sample RxD and collect the data bits in the RSR. A transmit subroutine used the TSR to shift 

data bits out TxD. 

The software UART was tested using a main program to receive a serial data message and save the 

ASCII characters to a memory table. The end of the message was indicated by the carriage return character 

(0x0D). The message was then retransmitted to the sender to verify its contents. A PC based serial 

communication terminal program was used to transmit the ASCII message at 9600 baud. The serial data 

was received by the FPGA microcontroller, running the software UART program, and successfully 

retransmitted back to the PC. The test results demonstrate half-duplex serial communication by the 

Instructional Processor. 

 

 

 

;Delay Subroutine 

;104us 

D104: MOVE 26, R3 

LOOP1: MOVE 50, R2 

LOOP2: ADD -1, R2 

 BNZ LOOP2 

 ADD -1, R3 

 BNZ LOOP1 

 RTN 
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HARDWARE UART 

 

In order to achieve full-duplex serial communication, a hardware UART needs to be interfaced with 

internal processor registers and memory. While VHDL models of hardware UARTs exist, they are often 

presented as stand-alone devices (Digi-Key Electronics, 2021) (Unsalan & Tar, 2017) or intellectual 

property cores that connect to proprietary bus architectures (Xilinx, 2017). The approach for this project 

was to adapt an existing UART model, based on the MC6811 (Roth & John, 2008), to the memory-mapped 

I/O interface already developed for the Instructional Processor. 

The UART block diagram and memory interface are shown in Figure 3. This implementation allows 

direct access to the UART data registers for receive and transmit (RDR and TDR), serial communication 

status register (SCSR) for flags RDRF (receive data register full) and TDRE (transmit data register empty), 

and control register (SCCR) for baud rate, via memory-mapped I/O. Dedicated RxD and TxD pins were 

also mapped to the FPGA and BASYS 3 board. The processor VHDL memory model was modified to 

interface with the UART control signals (Read RDR, Write TDR, and Write BAUD) when accessing the 

associated memory locations. 

 

FIGURE 3 

UART BLOCK DIAGRAM AND MEMORY INTERFACE 

 

 
 

VHDL models for the receiver, transmitter, and clock divider were then adapted to use the new 

memory-mapped registers and control signals. As an example, control logic for the transmitter is 

represented by the state machine chart in Figure 4 (Roth & John, 2008). Operation of the transmitter can be 

described by the following sequence: 

• Microcontroller waits until TDRE = '1' 

• Loads data into TDR 

▪ Clears TDRE 

• UART transfers data from TDR to TSR 

▪ Sets TDRE 

• UART outputs start bit ('0') then shifts TSR right eight times followed by a stop bit ('1') 
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A behavioral VHDL model was developed for the transmitter component, which was then instantiated 

into the UART module using structural VHDL. The remaining modules were developed and integrated to 

complete the hardware UART. 

 

FIGURE 4 

TRANSMITTER STATE MACHINE CHART 

 

 
 

TESTING THE HARDWARE UART 

 

The VHDL model for the integrated UART was first evaluated using a loopback test. The TxD pin is 

connected directly to the RxD pin and a single data byte (0x65) is transmitted (and received) at 9600 baud 

to verify operation and timing. The VHDL simulation results, using Vivado (Xilinx, 2019), are shown in 

Figure 5. The bit time of 104 µs can be verified by cursors on the bit clock (Bclk). The transmitted data is 

first loaded into REG4[1] and can be seen on TxD as it is sent LSB first (framed by start and stop bits). The 

correctly received data is stored in REG4[0], which can be seen at the end of the simulation. 
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FIGURE 5 

VHDL SIMULATION RESULTS FOR LOOPBACK TEST 

 

 
 

Next, the FPGA microcontroller was tested by interfacing with the PC based serial communication 

terminal. First, the results of the software UART were replicated with half-duplex reception, storage, and 

retransmission of a character string. Finally, full-duplex communication was tested by simultaneous 

reception and retransmission (echo) of an entire text data file (containing thousands of characters). 

Unfortunately, this test failed and numerous characters were dropped from the outgoing message. 

The failed echo test provided an opportunity for students to observe the troubleshooting process 

required to identify and correct this design error. VHDL simulation of the full-duplex echo test revealed 

that the transmitter was generating two stop bits, instead of just one. This meant that the transmitter would 

fall behind the receiver and miss characters in the message. Further analysis of the original transmitter state 

machine chart (Figure 4) revealed a logic flaw when two characters were transmitted back-to-back. This 

problem was corrected by skipping the (re-) SYNC state if another data byte was immediately ready to 

transmit (TDRE = 0), as shown in Figure 6. The updated VHDL model was synthesized to the FPGA and 

the echo test was demonstrated successfully. 

 

FIGURE 6 

CORRECTED VHDL MODEL FOR TRANSMITTER 

 

 
 

EXAMPLE MICROCONTROLLER APPLICATION 

 

An example microcontroller application was chosen to demonstrate the newly added serial 

communication capability. An RFID (radio frequency identification) Card Reader (Parallax, 2016) provides 

the capability to sense passive transponder tags used for access control and inventory tracking. The card 

when TDATA => 

 if (Bclk_rising = '0') then nextstate <= TDATA; 

 elsif (Bct /= 9) then 

 shftTSR <= '1'; inc <= '1'; nextstate <= TDATA; 

 elsif (TDRE = '0') then -- eliminate second stop bit 

 loadTSR <='1'; start <= '1'; clr <= '1'; nextstate <= TDATA; 

 else clr <= '1'; nextstate <= IDLE; 

 end if; 
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reader transmits serial data at 2400 baud. Each tag has a unique ID consisting of a 10-byte ASCII string 

framed by start (0x0A) and stop (0x0D) bytes. 

The card reader is connected to the FPGA microcontroller using the serial output (SOUT) and active 

low enable (/ENABLE) shown in Figure 7. An assembly language program was written to receive the 2400 

baud serial data stream and store the tag ID in a memory table. The last character from the ID was then 

displayed on the BASYS 3 board 7-segment display, which is also part of the memory-mapped I/O. The 

UART capable microcontroller successfully read and displayed all tag IDs and made a great demonstration 

of interfacing a commercial product for a real-life application. 

 

FIGURE 7 

PARALLAX RFID CARD READER 

 

 
 

RESULTS AND CONCLUSIONS 

 

This project successfully added serial communication capabilities to the Instructional Processor. First, 

a software UART was developed using timing loops and shift instructions to implement the standard 

asynchronous serial communication protocol. Testing, using a PC based serial communication terminal, 

verified half-duplex reception and retransmission of an ASCII text string. This implementation has been 

incorporated into the assembly language programming examples used as demonstration applications for the 

Instructional Processor. 

The hardware UART started as a final, stand-alone, design example in the Advanced Digital Systems 

course. It has now been integrated into the memory-mapped I/O of the Instructional Processor. The VHDL 

models are simulated using Xilinx Vivado, providing functional verification of the serial communication 

protocol. Students gain valuable insights into using simulation to identify and correct a logic flaw in the 

original UART design. The FPGA implementation then provides students actual hardware they can 

interface with, rather than just VHDL simulations. 

An RFID Card Reader was chosen as a microcontroller application for the FPGA implementation of 

the Instructional Processor. The design example gives students experience with interfacing a commercial 

product with their hardware and software design. RFID seems to be a student favorite, because they see 

real-life uses for the technology. The end result of this project is an expanded processor design example 

that continues to achieve its goal as a valuable instructional tool. 

Future work on the Instructional Processor includes development and integration of an interrupt system 

for timing applications and the UART. The guiding principle will be keeping the implementation simple 

enough to use as a teaching example, thus providing students with insights into capabilities available in 

modern commercial microcontrollers. 
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