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We examine the forecast precision and accuracy for forecasts from moving average and moving median 
methods on skewed i.i.d. time series following various lognormal probability distributions. Overall, we 
recommend the Moving Average method, MA, when forecasting time series that follow lognormal 
distributions. 
 
INTRODUCTION 
 

In forecasting, “precision” measures the un-biasness of a forecasting method and “accuracy” 
measures the dispersions of a forecasting method. In absolute terms, the sample mean for the error terms, 
݁̅, and the sample standard deviation for the error terms, se, are the most popular measures for forecast 

precision and accuracy, respectively. The inverse coefficient of variation, 
௘̅

௦೐
 (Hoover, 2006), and the 

coefficient of variation, 
௦೐
௘̅

 (Anderson, Sweeney, Williams, Camm, and Cochran 2016), are the two most 

popular scale-free measures for forecast precision and accuracy, respectively.  
In this study, we introduce a new forecast measure from the linear combination of scale-free forecast 

measures:  
 

L =  ௘̅
௦೐
+ (1-)(

௦೐
௘̅

),  where 0 ≤  ≤ 1. 

 
The weight, serves to reflect the forecaster’s emphasis on precision relative to accuracy. When  = 

0, L is the popular scale free forecast accuracy measure, the coefficient of variation, 
௦೐
௘̅

.  When  = 1, 

L is the popular scale free forecast accuracy measure, the inverse coefficient of variation, 
௘̅

௦೐
.  For 

instance, when =0.2, the forecaster is more concerned (80%) about the forecast accuracy from 
௦೐
௘̅

 rather 

than the forecast precision from 
௘̅

௦೐
. 

In this study, we compare forecast precisions and accuracies from the forecasting methods Moving 
Average (MA) and Moving Median (MMd) on various skewed i.i.d. time series following lognormal 
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distributions. Forecast precisions and accuracies are measured by absolute measures, ݁̅ and se, and relative 
measures L for  = 0, 0.2, 0.4, 0.6, 0.8, and, 1.0. 

We find that out of skewed i.i.d. time series from lognormal distributions with parameters ( =0,  

=1), ( =0,  =0.5), ( =0,  =0.25), ( =0,  =0.1) and skewness (݁ఙ
మ
൅ 2ሻඥ݁ఙమ െ 1, 6.1849, 1.9446, 

0.8340, 0.3113, respectively, the Moving Median method, MMd, only outperforms the Moving Average 
method, MA, in terms of forecasting accuracy for extremely skewed lognormal distribution with 
parameters ( =0,  =1), and skewness 6.1849. Overall, we recommend the Moving Average method, 
MA, when forecasting time series that follow lognormal distributions.  
 
DATA ANALYSIS 
 

In this study, we compare forecast precisions and accuracies from the forecasting methods Moving 
Average (MA) and Moving Median (MMd) on various skewed i.i.d. time series following lognormal 
distributions. Forecast precisions and accuracies are measured by absolute measures, ݁̅ and se, and relative 
measures L for  = 0, 0.2, 0.4, 0.6, 0.8, and, 1.0. 

A lognormal probability distribution is a probability distribution for a continuous random variable 
X > 0, where ln(X) follows a normal probability distribution. In summary, when X follows a lognormal 
distribution and ln(X) follows a normal distribution with a mean of  and a s.d. of , its probability 
density function for X is as follows 
 

f(x) = 
ଵ

௫ఙ√ଶగ
݁ି

ሺౢ౤ೣషഋሻమ

మ഑మ , x > 0, 

 

with E(X) = ݁ሺఓା
഑మ

మ
ሻ, Median(X) = ݁ఓ, Var(X) = (݁ఙ

మ
-1)݁ሺଶఓାఙ

మሻ, and the Skewness = ሺ݁ఙ
మ
൅

2ሻඥ݁ఙమ െ 1. 
 

Examples of lognormal distributions can be found in the fields of finance, and economics (Johnson, 
Kotz, and Balakrishnan, 1994, PP. 210-211, and Antoniou, Ivanov, Ivanov, and Zrelov, 2004). 
In this study, a simulation of 1,000 observations from a lognormal distribution are grouped into 50 groups 
each with 20 observations. For each group, the first 10 observations are treated as historical data, and the 
next 10 observations are treated as the realizations of actual observations. Moving averages (MA) and 
moving medians (MMd) with moving periods of 10 are applied as our forecasts for period 11 to 20. 
Forecast errors are defined as the differences between the realizations of actual observations for period 11 
to 20 and the forecasts generated from MA and MMd with moving periods of 10. The MA and MMd with 
moving periods of 10 are denoted as MA(10) and MMd(10), respectively. 

Pairwise T-test (or the Student T-test) for testing H0: MA ≥ MMd vs Ha: MA < MMd is applied to the 

50 independent ݁̅, se, and L for  = 0 (for 
௦೐
௘̅

), 0.2, 0.4, 0.6, 0.8, and 1.0 (for 
௘̅

௦೐
 ) generated from MA(10) 

and MMd(10), respectively. The results for the T-test are listed on the following page. 
 
CONCLUSION 
 

In this study, we find that the Moving Median method, MMd, only outperforms the Moving Average 
method, MA, in terms of forecasting accuracy for time series follow a very skewed lognormal probability 
distribution with parameters ( =0,  =1), and skewness 6.1849. Overall, we recommend the Moving 
Average method, MA, when forecasting time series that follow lognormal distributions (e.g. stock prices).  
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TABLE 1 
 

TESTING H0: e,MMd≥e,MA vs Ha: e,MMde,MA for LOGNORMAL with =0, =1 
 ݁ଵഥ െ ݁ଶഥ ௘భݏ  െ  ௘మ L=0ݏ

௘భݏ
݁ଵഥ

െ
௘మݏ
݁ଶഥ

 

L=0.2 L=0.4 L=0.6 L=0.8 L=1.0  
݁ଵഥ
௘భݏ

െ
݁ଶഥ
௘మݏ

 

Mean 0.4811 -0.0693 2.5444 2.1086 1.6727 1.2369 0.8010 0.3652 
s.d. 0.3442 0.1182 34.0192 27.2158 20.4128 13.6106 6.8116 0.3643 
T-ratio 9.8833 -4.1435 0.5289 0.5478 0.5794 0.6426 0.8315 7.0884 
p-value 1.0000 0.0001* 0.7004 0.7069 0.7175 0.7383 0.7951 1.0000 

* significant at  = 0.01, the skewness = (݁ఙ
మ
൅ 2ሻඥ݁ఙమ െ 1 = (e+2)√݁ െ 1 ≈ 6.1849 

 
TABLE 2 

 
TESTING H0: e,MMd≥e,MA vs Ha: e,MMde,MA for LOGNORMAL with =0, =0.5 

 ݁ଵഥ െ ݁ଶഥ ௘భݏ  െ  ௘మ L=0ݏ
௘భݏ
݁ଵഥ

െ
௘మݏ
݁ଶഥ

 

L=0.2 L=0.4 L=0.6 L=0.8 L=1.0  
݁ଵഥ
௘భݏ

െ
݁ଶഥ
௘మݏ

 

Mean 0.1130 0.0050 6.7375 5.4273 4.1171 2.8069 1.4967 0.1865 
s.d. 0.0953 0.0456 41.4876 33.1988 24.9101 16.6214 8.3332 0.1572 
T-ratio 8.3767 0.7757 1.1483 1.1560 1.1687 1.1941 1.2700 8.3866 
p-value 1.0000 0.7792 0.8718 0.8733 0.8759 0.8809 0.8950 1.0000 
* significant at  = 0.01, the skewness ≈ 1.9446 

 
TABLE 3 

 
TESTING H0: e,MMd≥e,MA vs Ha: e,MMde,MA for LOGNORMAL with =0, =0.25 

 ݁ଵഥ െ ݁ଶഥ ௘భݏ  െ  ௘మ L=0ݏ
௘భݏ
݁ଵഥ

െ
௘మݏ
݁ଶഥ

 

L=0.2 L=0.4 L=0.6 L=0.8 L=1.0  
݁ଵഥ
௘భݏ

െ
݁ଶഥ
௘మݏ

 

Mean 0.0259 -0.0010 -0.7038 -0.5451 -0.3865 -0.2278 -0.0691 0.0896 
s.d. 0.0384 0.0167 23.3133 18.6559 13.9986 9.3414 4.6849 0.1397 
T-ratio 4.7810 -0.4333 -0.2135 -0.2066 -0.1952 -0.1724 -0.1043 4.5343 
p-value 1.0000 0.3333 0.4159 0.4186 0.4230 0.4319 0.4587 1.0000 
* significant at  = 0.01, the skewness ≈ 0.8340 

 
TABLE 4 

 
TESTING H0: e,MMd≥e,MA vs Ha: e,MMde,MA for Lognormal with =0, =0.1 

 ݁ଵഥ െ ݁ଶഥ ௘భݏ  െ  ௘మ L=0ݏ
௘భݏ
݁ଵഥ

െ
௘మݏ
݁ଶഥ

 

L=0.2 L=0.4 L=0.6 L=0.8 L=1.0  
݁ଵഥ
௘భݏ

െ
݁ଶഥ
௘మݏ

 

Mean 0.0048 0.0002 -59.8470 -47.866 -35.886 -23.906 -11.926 0.0543 
s.d. 0.0152 0.0049 316.020 252.817 189.613 126.410 63.2067 0.1723 
T-ratio 2.2445 0.2284 -1.3391 -1.3388 -1.3383 -1.3373 -1.3342 2.2282 
p-value 0.9853 0.5899 0.0934 0.0934 0.0935 0.0937 0.0942 0.9848 
* significant at  = 0.01, the skewness ≈ 0.3113 
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