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In the European Union, residential districts consume a significant share of the total electricity, which is 
still mainly generated by conventional power plants. Consequently, utilising renewable energy carriers 
combined with electricity storage systems are necessary to mitigate climate change. To assess the 
electricity generation and the storage operation a techno-economic bottom-up model is applied and 
combined with a Life Cycle Assessment to evaluate the environmental impacts of the applied electricity 
storage system. Under the taken assumptions electricity storage systems have the potential to increase the 
degree of self-supply and autarky of the energy system as far as their prices decrease. 
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INTRODUCTION 
 
 Households account for 29% of the entire electricity consumption in the European Union (eurostat, 
2017). As the electricity generation in the European Union is still covered to 74% by conventional power 
plants, households contribute significantly to the emission of greenhouse gases (eurostat). Consequently, 
designing a sustainable energy system for residential districts is important to mitigate climate change. 
Substituting fossil fuels by renewable energies includes the utilisation of energy carriers such as solar and 
wind energy. To address their fluctuation and the temporal shift between power generation and 
consumption, electricity storage systems (ESS) are needed to secure a safe energy supply (Samsatli & 
Samsatli, 2018). There is a variety of storage technologies available, which cause environmental impacts 
by their production and utilisation, for instance resource depletion and climate change (Baumann, Peters, 
Weil, & Grunwald, 2017; McManus, 2012; Weber, Peters, Baumann, & Weil, 2018). Subsequently, 
finding an optimal economic and ecologic solution for residential districts is essential to balance resource 
use, climate change and costs. 
 Real-world systems are usually represented by models (Wiese, Hilpert, Kaldemeyer, & Pleßmann, 
2018). There is a variety of models, model generators or frameworks available to create and calculate 
energy system models (Hall & Buckley, 2016). Previous studies have analysed national (Rauner & 
Budzinski, 2017), international energy systems (Volkart, Mutel, & Panos, 2018) or small networks 
(household networks) in particular. Dispatch optimisation of energy system models that represent an 
accumulation of household networks are currently underrepresented. In the area of small networks, ESS 
integration is considered, for instance in Zhang et al. (2012) and Naumann et al. (2015), whereas it is 
neglected in more extensive energy systems, e.g. in Barteczko-Hibbert et al. (2014). Moreover, if a 
storage facility is present in a system, often only one storage technology is investigated, e.g. in Huneke et 
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al. (2012) or Rauner and Budzinski (2017). Stadler et al. (2012) investigate the environmental impacts of 
a house's power supply and take into account the charging of battery electric vehicles (BEV). However, 
electromobility is hardly integrated into other studies. In the field of energy system modelling, Life Cycle 
Assessment (LCA) is rarely conducted concerning the utilised ESS. This raises the question about the 
influence of different storage technologies on the dispatch and the environmental effects of an energy 
system. In order to determine the environmental impacts, LCAs have already been prepared for various 
stationary battery storage systems. However, the number is still small (Peters & Weil, 2018). In addition, 
efficiency, power dependence and life cycles are rarely considered (Spanos, Turney, & Fthenakis, 2015). 
To the author's knowledge, LCA of concrete applications of various battery storage devices in 
neighbourhood power networks have not yet been investigated. 
 This paper searches for an optimal dispatch for a valve-regulated-lead-acid (VRLA), lithium-ion-iron-
phosphate (LFP) and vanadium-redox-flow (VRF) battery by considering their efficiencies and life 
expectancies in on-grid and off-grid situations to deduce an adequate battery capacity. In order to address 
a future shift to BEVs, different shares are considered. Finally, a LCA, based on recent literature is 
conducted to evaluate the environmental impact of the utilised storage systems. As a result, an open 
source optimisation model for the electricity supply of a residential district is created to address climate 
change by the utilisation of renewable energies and ESS under the consideration of security supply 
aspects as well as economic and ecologic factors. 
 
Background 
 Recent literature applies energy system modelling mostly for component sizing, component location, 
comparative analysis and operational management (Bordin, 2015). For instance, in Zhang et al. (2012), 
Puri (2013) and Huneke et al. (2012) the component design serves, among other things, to determine the 
required power, the number and the capacity of the applied generation as well as storage technologies. 
The comparative analysis is used to compare different optimisation methods, such as the deterministic 
method compared to the generic method e.g. in Upadhyay and Sharma (2013). Optimisation of 
operational management is often aimed at minimising operating costs. In grid-connected models, it is 
possible to feed surplus electricity into the grid and thus sell it on the electricity exchange (Bordin et al., 
2017). For example, Chen et al. (2010) are investigating a self-sufficient power grid with the aim of 
storing surplus electricity generated by renewable energies for a later utilisation. Mustonen and 
Nanthavong (2006) analyse the electricity grid of a village over a 24-hour operating period and go into 
more detail on the non-linearity of the cost development of the electricity producers. Kriett and Salani 
(2012) additionally integrate the influence of electromobility into the household grid they are 
investigating. Research into environmental influences are more frequently linked to component design for 
instance in Kazemi and Rabbani (2013) and Chedid and Rahman (1997). In the field of operational 
management, Stadler et al. (2012) investigate the influence of electromobility on the power grid of a 
house, whereby costs or carbon dioxide emissions can be optimised (Stadler et al., 2012). In addition to 
examining environmental impacts in the household sector, other authors examine global or national 
energy systems and integrate environmental impacts into their optimisation e.g. in Rauner and Budzinski 
(2017), Barteczko-Hibbert et al. (2014) and Volkart et al. (2018). LCA is often used to determine the 
potential environmental impacts of products or processes (Deutsches Institut für Normung e.V., 2019). 
Peters et al. (2017) identify 79 LCAs about lithium-ion-batteries and 34 LCAs about electromobility. The 
LCAs on electromobility examine the use of BEV in comparison to conventional vehicles, whereby the 
batteries are considered as part of the BEV (Spanos et al., 2015). Of the 79 studies, only a few investigate 
the production phase of stationary battery storage systems (Peters & Weil, 2018). An example for the 
investigation of stationary battery storage is provided by McManus (2012), which investigates the 
production of 1 kg or 1 MJ capacity of different battery types considering the energy densities of the 
technologies. In addition to McManus (2012), Rydh and Sandén (2005) determine the cumulative energy 
demand for a battery storage system with 50 kW power and 450 kWh capacity with an electricity supply 
of 150 kWh through photovoltaic over the production and utilisation phase. They consider different 
battery technologies taking into account different discharge depths, efficiencies and energy densities. In 
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addition to this work on different battery technologies, Weber et al. (2018) analyse the provision of 1 
MWh of electricity over 20 years by a vanadium-redox-flow battery, taking into account the production, 
utilisation and disposal phase. A more recent comparison of stationary ESS is provided by Baumann et al. 
(2017), which determine the carbon dioxide footprint and the life cycle costs for a wide variety of battery 
technologies on the basis of their energy densities, efficiencies, cycle life and costs. 
 
METHODS 
 
 A techno-economic bottom-up model for a residential district based on hourly data is created and 
combined with an LCA for the utilised ESS. The energy system model is created by using the open 
energy modelling framework (oemof) (Hilpert et al., 2018), which is an open source framework 
developed at the University of Applied Sciences in Flensburg. Oemof optimises the modelled energy 
system with the goal of minimising the sum of variable costs (cvar) for the total period of time (T) 
according to equation (1) with f(p,s),t being the flow between its predecessor (p) and its successor (s) 
component in timestep (t) multiplied with the length of the timestep ( t) (Wingenbach, Hilpert, & 
Kaldemeyer, 2017). A full description of the framework contains the documentary of oemof (oemof-
Team, 2019). The complete mathematical approach is explained in Manfren (2012). 
 

 (1) 
  

The parametrisation of the model is realised by a literature research for specific technologic and 
economic data for power generation plants, ESS and load profiles representing households and BEVs. A 
simplified representation of the model is displayed in FIGURE 1. Scenarios are defined which consider 
different situations of grid operation. Off-grid as well as on-grid operation with different amounts of 
BEVs are investigated. Following, the dispatch optimisation of the scenarios for the time period of one 
year is carried out. Adding the ecological pillar to the model an LCA is conducted to evaluate the 
environmental burden of the utilised ESS. 
 

FIGURE 1  
SIMPLIFIED ENERGY SYSTEM MODEL 

 

 
 
Demand Modelling 
 The applied load profiles were metered with a resolution of 15-minutes during 2008 to 2011 for 497 
households (IZES gGmbH, 2012). Tjaden et al. (2015) select 74 load profiles from 2010 with typical 
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seasonal and daily performance of households electricity consumption and are closing data gaps to create  
1-second sampled load profiles. The load profiles are again adapted to an hourly resolution and adjusted 
to the 2017 calendar year. The total demand accounts for 346,836 kWh per year with a maximum power 
demand of 98 kW. 
 To model the electricity demand of BEVs, load profiles published from Schäuble et al. (2017) and 
created from Heinz (2018) are utilised. Heinz (2018) creates different load scenarios for BEVs in his 
work. In the model the load profile type 3 is applied assuming that the BEV is only charged at home. The 
charge power accounts for 3.7 kW resulting in a total demand of 1,433 kWh per year. The load profiles 
are converted to hourly values and adjusted to the 2017 calendar year. Different load profiles for 
weekdays and weekends are applied. The amount of BEVs is varying over the defined scenarios. 
 
Energy Generation Modelling 
 The energy supply is provided by combined heat and power (CHP), photovoltaics (PV) and the 
electricity grid. The CHP is fired with natural gas and designed based on the electricity load curve of the 
households. It is assumed that all generated heat will be consumed and sold at break-even for instance to 
provide thermal energy to a heat grid. The CHP is designed to reach 6,000 full load hours per year. 
Consequently an electric power of 30 kW resulting in a total power of 101 kW is installed (ETZ-Energie-
Technik der Zukunft, 2018). The electricity generation from the CHP is not controlled by a load profile. It 
is only limited by the total maximum power and the variable costs. The variable costs of the CHP are 
containing costs for fuel, lubricating oil and maintenance, which are estimated based on ASUE e.V. 
(2011). To allocate the total variable costs to generated heat and electricity, the total efficiency method is 
applied (Hörner, 2013). This method is based on the thermal and electric efficiency of the CHP and a 
reference system thus securing a realistic allocation of the costs. Based on the above-mentioned 
assumption concerning the heat consumption the variable costs for heat are set to zero. The variable costs 
for the generated electricity account for 1.1307 €cent per kWh. 
 To cover the remaining electricity demand PV is utilised. Assuming a generation of 180,000 kWh 
covered by the CHP and a total demand of 346,836 kWh a residual demand of 166,694 kWh exists. In 
Germany, the average PV system size accounted for 7 kWp for newly installed systems in 2018 
(Bundesnetzagentur, 2018). By generating a load profile of a 7 kWp PV system located in Pforzheim, 
with a system efficiency of 15% (Konstantin, 2017) results in an electricity generation of 6,964 kWh per 
year. The load profile is generated with an hourly resolution by utilising the PV GIS of the European 
Commission (European Commission, 2017), which exhibits a high accuracy (European Commission, 
Joint Research Centre, Renewable Energies Unit, 2006). This equals an installed capacity of 168 kWp. 
Applying a security factor of 10% results in 184 kWp installed capacity, which is distributed over 26 
households. Operational costs for PV systems are caused by maintenance and operation (Kaltschmitt, 
Streicher, & Wiese, 2013). Although being fixed costs those are allocated over the generated electricity as 
the amount of kilowatt-hours generated is constrained. Thus, variable costs account for 
5.528 €cent per kWh. 
 As a reference system the model has the possibility to consume electricity from the electricity grid, 
which is represented by the European Power Exchange (EPEX) spot market prices of 2017. The hourly 
price profile is fed into the model. The electricity supply from the grid is only constrained by the hourly 
prices. Caused of errors raising when applying negative prices, all negative prices are set to zero. 
 
Electricity Storage System Modelling 
 Three battery types are analysed based on available manufactures data. The SAGM 12V/205Ah 
(Trojan Battery Company) represents a VRLA, the TR 12.8V/92Ah (Trojan Battery Company) a LFP and 
the VoltStorage SMART (“Technisches Datenblatt”) a VRF. The utilised batteries are represented as a 
storage object in oemof (Hilpert et al., 2018). According to oemof the storage object is defined by the 
nominal capacity, maximum input (charge rate) and output flows (discharge rate), capacity loss, initial 
capacity, inflow and outflow efficiency and the maximal depth of discharge (DODmax). Subsequently, the 
calculation of the needed parameters is explained. 
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 Generally, the nominal capacity of batteries is measured by ampere hours (Ah). To work in kWh the 
capacity is multiplied with the nominal voltage of the battery, assuming an ideal battery (Argent-Katwala, 
Dingle, & Harder, 2009). The installed capacity is estimated according to Waffenschmidt (2014), which 
conclude that per kWp installed power PV one kWh of storage capacity is economically viable 
(Qinst,BatPV). The second analysed capacity (Qinst,BatLP) is calculated based on an average daily electricity 
consumption of the analysed residential district. Because of the possibility to trade electricity three days 
in advance at the EPEX, the second analysed battery capacity is able to cover three days. Although the 
battery suffers from calendric and cycling degradation (Bordin, 2015; Naumann et al., 2015) the capacity 
is assumed to be constant. 
 The maximum discharge rate is calculated based on the installed capacity divided by the possible 
discharge time provided by the manufacturer. Thus, the capacity is secured to be available although 
higher discharge speeds might be possible. Due to the lack of data concerning charge rates the maximum 
charge rate is assumed to equal the maximum discharge rate. Only one datasheet (Trojan Battery 
Company) provides a charge rate, which is higher than the discharge rate. In contrast, in Yoshida et al. 
(2016) the charge rate is lower than the discharge rate for a lithium-ion-battery, thus the assumption is a 
compromise. The total efficiency (DC-DC) is taken from Baumann et al. (2017). Monthly storage losses 
are based on Sterner and Stadler (2017) and are converted into hourly efficiencies ( storage). By equating 
charge and discharge efficiency the discharge efficiency is calculated by equation (2) (Bordin et al., 2017; 
Peterson, Whitacre, & Apt, 2010). Differences between charge and discharge can be assumed to be 5% 
(Huneke et al., 2012) and result in a slight misallocation of storage losses. To include losses resulting 
from inverting AC to DC the DC-DC efficiency is multiplied with the square of the inverter efficiency of 
95% (Konstantin, 2017) resulting in the total AC-AC efficiency. 
 

 (2) 

 
 The minimal state of charge (SOCmin) is based on values from Baumann et al. (2017). The starting 
capacity (SOCstart) is set to 50% of the total installed capacity. 
The variable costs for the utilised ESS are calculated by using the ampere hours throughput (Ah-model) 
model, thus considering their cycle life (Bindner, 2005). The Ah-model is applicable as it allows an 
estimation of battery cycle life without needing exact information of the analysed battery, although it 
neglects the exact process of (dis)charging (Beer & Rix, 2016). It utilises the lifetime curve of the battery, 
which is provided by datasheets of the manufactures and displays the amount of cycles to failure 
depending on different DOD until end of life of the battery. Thus, it is easy to apply and is frequently 
used (Bordin et al., 2017; Peters et al., 2017; Spanos et al., 2015). By applying the installed capacity 
(Qinst,bat) in Wh the total lifetime throughput (LT) is calculated as described in equation (3) (Bordin et al., 
2017). Averaging different DOD (dn) and their corresponding cycles to failure (fn) results in an average 
LT value. The factor n depends on the considered DODmax. 
 

 (3) 
 
 By defining the calendric lifetime to be 10 years, which is the minimum lifetime for VRLA 
(Baumann et al., 2017) a LT per year (LTyear) can be derived. Based on the LTyear variable costs are 
calculated based on literature data from (Baumann et al., 2017). They publish operation and maintenance 
costs for batteries, not considering the electricity demand for periphery or battery management system 
(BMS). Those operational costs are already included in the AC-AC efficiency of the ESS (Sterner 
& Stadler, 2017). In addition battery degradation costs are considered based on investment costs from 
Baumann (2017). Generally, the end of life of a battery is reached when the available battery capacity 
decreases to 80% of its initial capacity (Krieger, Cannarella, & Arnold, 2013; Ramoni & Zhang, 2013). 
Consequently, up to 80% of initial capacity is remaining (Bobba et al., 2018; Ramoni & Zhang, 2013; 
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Reid & Julve, 2016). Although other research suggest a non-linear degradation of the battery after 
reaching the 80% (Jongerden & Haverkort, 2017; Keil, Schuster, Lüders, & Hesse, 2015) it is assumed 
that only a replacement investment of 20% (i) of the initial investment must be undergone as the 
stationary application of batteries is a less stressful application (Reid & Julve, 2016). This is an optimistic 
assumption taken. As a result of the optimisation an application of 100% would lead to almost no ESS 
operation. Finally, the battery degradation costs (BDCkWh) are calculated according to equation (4) 
(Bordin et al., 2017). Adding the variable costs for operation and maintenance results in the total costs per 
kWhLT, which arise for every charged kWh in the ESS. 
 

 (4) 
  

A summary of all parameters set in the model is depicted in TABLE 1. 
 
Scenario Analysis 

Scenario I assumes a grid connected energy system with no BEV in the system. The scenario shall 
indicate how economically viable an ESS can be utilised in collaboration with PV and CHP compared to 
the consumption of electricity from the grid. The installed capacities of Qinst,BatPV, Qinst,BatLP are analysed, 
thus the scenario is divided into IPV and ILP. Furthermore, self-supply degree and autarky degree are 
calculated. All results are compared to a base scenario without an integrated ESS. 
 Scenario II assumes a grid connected energy system with 74 electric vehicles in the system. The 
installed capacities of Qinst,BatPV, Qinst,BatLP are again analysed, thus the scenario is divided into IIPV and 
IILP. It will display the impact of an increasing use of electromobility on the operation of residential 
districts. 
 Scenario III assumes an off-grid energy system and is analysed without any electric vehicle 
connected. The installed capacities of Qinst,BatPV, Qinst,BatLP are analysed, thus the scenario is divided into 
IIIPV and IIILP. As the energy demand cannot be fully provided by the modelled electricity generation an 
extra electricity provider is installed. This emergency generation is integrated instead of the EPEX spot 
market and highly priced. Thus, it is only activated when electricity is missing. Consequently, this 
scenario will show whether a battery storage system combined with PV and CHP can supply the system 
autarky. 
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TABLE 1 
SUMMARY OF PARAMETERS 

Energy generation CHP PV Grid 
Pinstalled,el [kW] 
Cvar,el [€cent/kWh] 

30 
1.131 

184 
5.528 

1,000,000 
EPEX Spot 2017 

ESS VRF LFP VRLA
Qinst,BatPV [kWhinst] 
Qinst,BatLP [kWhinst] 
LTspez [kWhLT/kWhinst] 
Pmax,chargePV=Pmax,dischargePV [kWh] 
Pmax,chargeLP=Pmax,dischargeLP [kWh] 

storage [%] 
charge = discharge [%] 
total,AC-AC [%] 

DODmax [%] 
SOCstart [%] 
Cvar,Bat [€cent/kWhLT] 
BDCkWh [€cent/kWhLT] 
Cvar,Bat,total [€cent/kWhLT] 

182 
2,850 
873 
25 
390 
98.75 
82.79 
69.53 
80 
50 
0.547 
0.916 
1.463 

182 
2,850 
3,854 
36 
570 
99.90 
93.08 
86.73 
77 
50 
1.297 
1.604 
2.901 

182 
2,850 
10,000 
18 
285 
99.29 
83.39 
68.54 
56 
50 
1.936 
5.269 
7.205 

Life Cycle Assessment 
 LCA is a preferred approach to quantifying potential environmental impacts and is frequently applied 
(Majeau-Bettez, Hawkins, & Strømman, 2011; Peters et al., 2017; Spanos et al., 2015). Due to its life 
cycle approach all stages of life concerning a product or process from material mining over procurement, 
production, use and end-of-life is considered. All material and energy inputs assigned to processes or 
products must be included (Deutsches Institut für Normung e.V., 2019). LCA is based on the ISO 14044, 
which is a framework how to conduct an LCA (Deutsches Institut für Normung e.V., 2018; Zackrisson, 
Avellán, & Orlenius, 2010). 
 The goal of the assessment is to provide an analysis of the applied ESS. It is supposed to assist on the 
decision which ESS to utilise considering the potential environmental impact. FIGURE 2 depicts the 
analysed product system and visualises the system boundaries. Production including transport and use 
phase are analysed. The end-of-life stage is disregarded as the analysed time period is one year. 
Furthermore, this approach is used in Zackrisson et al. (2010). Recycling processes are already available 
for VRLA but not yet established for VRF and LFP (Baumann et al., 2017). 

FIGURE 2 
ANALYSED PRODUCT SYSTEM 



Journal of Strategic Innovation and Sustainability Vol. 14(6) 2019 63 

 Often the functional unit is based on installed battery capacity e.g. in McManus (2012). That 
approach is impractical as ESS properties, especially lifetime and efficiency are varying (Peters & Weil, 
2018; Spanos et al., 2015). By applying the approach of the lifetime throughput, which was already 
introduced for the variable costs’ calculation for the ESS, the lifetime of the battery can be considered 
(Spanos et al., 2015). From manufactures data the specific lifetime throughput (LTspez) is derived 
following the equation (5) by averaging different DOD (dn) and their corresponding cycles to failure (fn). 
The factor n depends on the considered DODmax (See TABLE 1). 

(5) 

Additionally, the AC-AC efficiency (See TABLE 1) is considered to calculate the electricity losses 
(Wloss) due to the storing process. LTspez is derived from equation (5) where total,AC-AC represents the AC-
AC efficiency of the ESS (See equation 6) (Spanos et al., 2015). 

(6)

 Consequently, the functional unit is 1 MWh discharged from the utilised ESS, without considering 
discharge due to losses. 
 The International Reference Life Cycle Data System (ILCD) (2011) midpoint impact assessment 
factors are applied as they contain the most advanced assessment factors according to 
Hauschild et al. (2013). There are 18 different impact categories defined in the ILCD. This study focuses 
on climate change, resources - mineral, fossils and renewables and ecosystem quality - freshwater 
ecotoxicity. This selection is based on Peters et al. (2017). 

Life Cycle Inventory 
 The life cycle inventory for the ESS is based on a literature research and the ecoinvent 3.3 database 
(Wernet et al., 2016). The material procurement is primarily based on data from ecoinvent, whereas 
component and product manufacturing, transport and use phase are based on literature research thus being 
the foreground system. Procurement represents the background system. In the following the different 
inventories and methodology for the modelling of the LCA are described. 
 The foreground system of the VRLA is modelled according to Spanos et al. (2015) by utilising their 
published inventory. The battery management system (BMS) is modelled according to 
Ellingsen et al.  (2014), as they provide the most detailed inventory for BMS (Peters & Weil, 2018). It 
substitutes the balancing and control electronics applied by Spanos et al. (2015). The share of the BMS of 
the total weight is not adapted. As Spanos et al. (2015) analyse a battery with an energy density of 34 
Wh/kg the inventory is assumed to fit for the SAGM 12V/205Ah, which exhibits an energy density of 
35.39 Wh/kg. 
 The inventory for the production of LFP batteries is based on the work of Peters and Weil (2018), 
which created unified inventories for lithium-ion-batteries. Zackrisson et al. (2010) describe the 
manufacturing process for 1 kg of LFP with an anode made of carbon, which is representing the utilised 
LFP TR 12.8V/92Ah. For the modelling default providers for BMS (Ellingsen et al., 2014), pack housing 
(Bauer, 2010), cell package (Ellingsen et al., 2014), electrolyte (Notter et al., 2010), cathode (Bauer, 
2010) and anode binder (Peters, Buchholz, Passerini, & Weil, 2016) according to Peters and Weil (2018) 
are set. The full inventory can be obtained from Peters and Weil (2018). As Zackrisson et al. (2010) 
analyse a battery with an energy density of 93 Wh/kg the inventory is assumed to fit for the TR 
12.8V/92Ah, which exhibits an energy density of 95.74 Wh/kg. 
 The inventory for the production of 1 kg of VRF battery is based on Weber et al. (2018). The energy 
density is taken from Weber et al. (2018) as the datasheet does not provide any data. 
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 Preferably market processes from the ecoinvent database 3.3 are utilised to model the background 
system as those represent a consumption mix dependent on a region or product (Wernet et al., 2016). The 
production is assumed to take place in Europe, thus processes delivering energy are modelled when 
possible with European energy mixes. For the procurement of materials mostly global processes are 
applied, which use a global supply chain (Wernet et al., 2016). 
 To assess the transport from the production plant to the final user an average intra Europe transport 
distance of 600 km is assumed (eurostat). Furthermore, it is assumed that the inverter is transported with 
the battery as one system. The inventory of the inverter is scaled to the needed maximum power for each 
ESS thus the inverter size is varying for each applied battery system. As a result of the process an amount 
of kilowatt-hours installed capacity is calculated based on the energy densities of each ESS. 
 The use phase is basically just converting the delivered installed capacity into a LTtotal by applying the 
LTspez for each ESS. Considering the efficiency, a part of the LTtotal is converted to losses, while the rest is 
usable electricity discharged from the battery. The considered electricity mixes to cover the battery losses 
is covered by the “market group for electricity, low voltage electricity, low voltage for Europe without 
Switzerland” from the ecoinvent database 3.3. assuming a usage in Europe. 
 
RESULTS 
 
Dispatch Optimisation – Scenario I 
 The optimisation of scenario IPV shows that only the LFP and the VRF battery system are able to 
decrease the total electricity demand of the modelled system compared to the base scenario. The VRLA is 
only charged to cover its losses due to the constrained minimum state of charge, thus it is increasing the 
energy demand of the system by 1,498 kWh. The energy system with a VRLA applied, consumes the 
most energy from the electricity grid and utilises the lowest amount of PV and CHP generated electricity. 
Consequently, it exhibits the lowest degree in self-supply and autarky. The energy system using the LFP 
battery system consumes the lowest amount of electricity and decreases the consumption by 17,968 kWh. 
Electricity supplied by the grid accounts for 62,417 kWh and is the lowest value achieved in scenario I. A 
high utilised share of PV and CHP increases the degree of self-supply by 10% and autarky by 6% 
compared to the base scenario. The VRF system reduces the overall electricity generation by 9,534 kWh 
and utilises the highest share of CHP and PV, which is mainly due to its comparatively high inefficiencies 
during charge, discharge and storage. A summary of the results is displayed in FIGURE 3. The ESS 
performances are displayed in FIGURE 4. PV electricity is mostly stored in the ESS followed by CHP 
and the grid. The VRLA exhibits the lowest amount of discharged electricity due to its expensiveness. 
The highest electricity losses are achieved by applying the VRF battery system, which suffers from the 
lowest total efficiency. The highest impact can be allocated to the losses during storing the electricity 
especially for higher installed capacities. The highest discharge – charge efficiency reaches the LFP 
system in scenario IPV with 84%. 
 When analysing the yearly demand curve of the base scenario it exhibits the typical patterns with a 
higher electricity demand during winter periods and lower during summer periods. The entire year, 
electricity is supplied by the electricity grid, but showing a small amount during the summer period. The 
average CHP electricity generation accounts for 18.23 kW and is increased to 18.8 kW by utilising the 
LFP. The CHP only charges electricity into the battery during winter periods, when electricity generation 
from PV is decreasing and EPEX prices are high. The electricity supplied by the grid is reduced and 
reaches its smallest value during summer periods. During winter periods grid electricity supply increases 
due to lower PV generation. Noticeable are peaks of grid electricity supply due to falling electricity prices 
up to 0 €cent per kWh. The average grid electricity charge power accounts for 0.2 kW over the year. The 
PV electricity feed-in the grid can be delayed by eight days compared to the base scenario. High 
electricity feed-in from PV is available from the 52nd day until the 305th day. The average PV charge 
power into the ESS accounts for 2.6 kW over the year. 
 Utilising the VRF system, almost the same yearly curve occurs, showing a slightly higher charge of 
PV electricity into the battery over the year most likely due to the higher losses of the VRF battery. The 
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average electricity power of CHP increases to 19.4 kW. PV and grid electricity are charged into the 
battery with an average power of 3.4 kW and 0.4 kW respectively. Concerning the VRLA the dispatch 
optimisation results show almost the base scenario due its high battery degradation costs. 
 Scenario ILP shows a tremendous increase in grid electricity consumption of 23,208 kWh for the 
VRLA and 31,883 kWh for the VRF system. Only the LFP system slightly reduces the grid electricity 
consumption by 92 kWh. The VRLA and VRF systems store higher amounts of electricity generated by 
PV and CHP to cover their efficiency losses. This results in higher self-supply rates, as battery losses are 
considered as demand. Only the LFP system is able to deliver a significantly higher amount of electricity 
than in scenario IPV, which leads to a slight increase in the degree of autarky (+2%) and self-supply 
(+2%). The increase is also based on higher losses of the battery, which are covered by a higher 
electricity charge from PV. All results are summarized in TABLE 3. 
 The analysed yearly demand curve exhibits higher charge power into the ESS by the electricity grid, 
especially during price periods when prices falling to 0 €cent per kWh. 
 

FIGURE 3 
SCENARIO I – UTILISED ELECTRICITY GENERATION FOR DEMAND COVERING 

 

 
 

FIGURE 4 
SCENARIO I – STORAGE CHARGE/DISCHARGE PERFORMANCE 
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Dispatch Optimisation – Scenario II 
 Comparing the two base scenarios additional 106,054 kWh per year are consumed in scenario II due 
to the electricity consumption of the electric vehicles. This extra demand is mostly covered by electricity 
from the grid, which almost doubles, followed by CHP and PV generation with an increase of 14,688 and 
8,813 kWh per year respectively. 

The utilisation of the VRLA system shows the same results as in scenario I and is not further 
analysed. Again, the energy system using the LFP battery system generates the lowest amount of 
electricity and decreases the generation by 21,998 kWh compared to the base scenario. Grid delivered 
electricity accounts for 141,306 kWh and is the lowest value achieved in scenario II. A high utilised 
electricity share of PV and CHP generation increases the degree of self-supply by 9% and autarky by 5% 
compared to the base scenario. The VRF battery system reduces the overall electricity generation by 
9,942 kWh and utilises the highest share of CHP and PV generation. It reaches the same value for self-
supply degree but a lower value for the autarky degree (63%) compared to the LFP battery system. A 
summary of the results is displayed in FIGURE 5. 

The ESS performances are displayed in FIGURE 6. PV electricity is mostly stored in the ESS 
followed by CHP and grid electricity. The VRF, which suffers from the lowest total efficiency, exhibits 
the highest losses. The highest efficiency regarding discharge – charge ratio reaches the LFP system in 
scenario IIPV with 85%, whereas the VRF system reaches 54%. Utilising the LFP battery system the 
CHP generation increases to 20.4 kW. The CHP is again charging electricity into the battery during 
winter periods, when electricity generation from PV is decreasing and EPEX prices are high. This occurs, 
when the CHP cannot provide enough electricity to cover the entire demand. Compared to scenario I 
those periods increased slightly. For the entire year the electricity supplied by the grid increased 
compared to scenario I, resulting in no periods of self-supply. During winter periods grid electricity 
supply again increases due to lower PV generation. Noticeable are again peaks of grid electricity supply 
due to low electricity prices. The average grid electricity charge power accounts for 0.25 kW over the 
year. The PV grid feed-in starting point can be delayed again. The average PV power charge rate accounts 
for 3.1 kW over the year. 
 Utilising the VRF system, almost the same yearly curve occurs, showing a slightly higher charge of 
PV electricity into the battery over the year. The average electricity power of CHP increases to 20.6 kW. 
PV and grid electricity are charged into the battery with an average power of 3.5 kW and 0.6 kW 
respectively. 
Scenario IILP shows a tremendous increase in grid electricity consumption of 28,706 kWh for the VRLA 
and 37,335 kWh for the VRF system. Only the LFP system reduces the grid electricity consumption by 
11,922 kWh. The VRLA and VRF systems store higher amounts of electricity generated by PV and CHP 
to cover their efficiency losses. This results in higher self-supply rates, when battery losses are considered 
as demand. LFP and VRF system are able to deliver a significantly higher amount of electricity than in 
scenario IIPV, which leads to an increase in the degree of autarky (+6%) and self-supply (+7%) at least 
for the LFP system. The self-supply degree of the VRF system increases by 4% as the total losses are 
increasing as well. The autarky degree decreases to 57%. Only the LFP system can reduce total electricity 
demand significantly by utilising generated PV electricity. All results are summarized in TABLE 3. 
 The analysed yearly demand curve exhibits higher charge power into the ESS by the electricity grid, 
especially during price periods when prices falling to 0 €cent per kWh. 
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FIGURE 5 
SCENARIO II – UTILISED ELECTRICITY GENERATION FOR DEMAND COVERING 

FIGURE 6 
SCENARIO II – STORAGE CHARGE/DISCHARGE PERFORMANCE 

Dispatch Optimisation – Scenario III 
 In general, the designed energy model is not able to sustain autarky. All three ESS can reach self-
supply degrees over 76% and autarky degrees over 87% for the analysed capacities in IIIPV and IIILP. 
Autarky periods during the year can be seen during periods of high PV electricity generation mainly in 
the middle of the year for all ESS. Although the VRLA and VRF systems are competitive compared to 
the LFP system in scenario IIIPV they lose ground in scenario IIILP caused by high losses during 
electricity storing (See FIGURE 7). As the LFP system achieves the highest values of self-supply (86%) 
and autarky degree (90%) in IIILP it is closer analysed. The lowest amount of emergency electricity and 
electricity consumption is reached utilising the LFP battery system in IIILP. The LFP storage behaviour 
in IIILP shows a decrease of electricity generation of 5,880 kWh per year and an increase of storage 
losses of 10,400 kWh compared to IIIPV. The losses are mainly covered by PV electricity, which 
utilisation increases by 16,280 kWh. The total amount supplied by the emergency generation decreases by 
12,976 kWh. 
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 The ESS performances are displayed in FIGURE 8. PV electricity is mostly stored in the ESS 
followed by CHP. The VRF exhibits the highest losses. The highest efficiency regarding discharge – 
charge ratio reaches the LFP system in scenario IIILP with 75%. 
 

FIGURE 7 
SCENARIO III – UTILISED ELECTRICITY GENERATION FOR DEMAND COVERING 

 

 
 

FIGURE 8 
SCENARIO III – STORAGE CHARGE/DISCHARGE PERFORMANCE 
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due to electricity losses of the ESS, whereas LFP emitting the lowest total amount of kg CO2-Eq 
followed by VRF and VRLA (See FIGURE 11). The highest share of impacts in the battery system 
production hold cell production for LFP (15% of the total emissions). For VRF the highest impact is 
caused by the electrolyte production (15% of the total emissions) whereas the lead production is primarily 
causing most impacts during production for the VRLA battery system. The emissions for climate change 
for the analysed ESS are in line with recent literature (Baumann et al., 2017; Spanos et al., 2015; Weber 
et al., 2018). Electricity losses contribute highly to the impact of freshwater ecotoxicity (See FIGURE 
10). Again, the high amount of lead results in a high impact during lead production for the VRLA. The 
cell production for the LFP is main driver of the impact category (21% of total emissions), whereas the 
electrolyte production for the VRF battery module is emitting the most impacts for the VRF (14% of total 
emissions). 

TABLE 2 
ESS CAPACITIES AND MASSES 

ESS VRLA LFP VRF 
Capacity [kWhinst] 1.65 0.30 0.15 

Mass [kg] 47 3 6 

FIGURE 9 
RESULTS FOR RESOURCES-MINERAL, FOSSILS AND RENEWABLES 
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FIGURE 10 
RESULTS FOR ECOSYSTEM QUALITY-FRESHWATER ECOTOXICITY 

 

 
 

FIGURE 11 
RESULTS FOR CLIMATE CHANGE 
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CONCLUSIONS 
 

Generally, the LFP battery system shows the best constellation of variable costs, energy density, 
efficiencies and lifetime. It is followed by the VRF system on condition the installed capacity is 182 
kWhinst. Then it is achieving similar degrees of self-supply and autarky when applied in the energy system 
model. Consequently, those ESS in combination with PV and CHP are competitive with the EPEX spot 
market under the taken assumptions in a grid connected system. The VRLA system is almost not operated 
during the analysed year caused by its low cycle life and high battery degradation costs respectively. High 
cycle life of LFP and VRF compensates their high specific costs per installed kilowatt-hours. Due to the 
low battery degradation costs those ESS are operated more often during the analysed year. They are 
reaching only low amounts of used lifetime throughput, which is in line that a stationary application is 
less stressful for ESS. Thus, making the assumption of considering only 20% of replacement costs more 
likely. But it is questioning the approach only considering battery degradation costs based on cycle aging 
as the calendric aging might have more influence.  

In scenario I too high installed capacities in the grid connected system are not recommended as they 
only increase storage losses. However, an increasing demand due to BEVs can make an extension of 
storage capacity useful. Consequently, both demand curve and supply curve are decisive for the optimal 
storage capacity, as it can assist to compensate the daily shift of demand and PV supply. Self-discharge 
rates per hour are decisive for ESS with high capacities. Thus, making the VRF system the more 
recommended system for hourly energy shift due its high storage losses. The LFP system shows potential 
being a daily storage system for instance in off-grid situations as it is able to store electricity over time 
more efficiently. It is noticeable, that a significant increase of storage capacity only results in little 
increases of the degrees of self-supply and autarky, which is in line with Waffenschmidt (2014) and 
Weniger and Quaschning (2013). 
 The analysed ESS are not able to maintain autarky in the analysed system as the summer winter 
discrepancy cannot be closed. The LFP reaches the highest autarky degree in the off-grid scenario with an 
installed capacity of 2,850 kWhinst. Combined with long-term storage system with low self- discharge 
rates autarky might be possible. VRF and VRLA suffer from high inefficiencies in scenario III. Thus, 
they are not recommended for high capacities in off-grid scenarios as they need extra supply to maintain 
their minimum state of charge. 
 The VRLA shows the highest impacts in all assessed categories due to its low energy density and low 
cycle life, which is significantly increasing the lead demand. The carbon dioxide emissions in the 
production phase of VRF and LFP are almost the same. During the use phase the high inefficiencies of 
the VRF system are contributing mainly to its impact. Substituting the European electricity mix with an 
electricity generation from renewables will reduce impacts due to losses for all three systems and all 
impact categories. Consequently, the source of electricity is an important criterion, when analysing the 
use phase of batteries. An increase of efficiency of the VRF system will result in an improvement in the 
categories of climate change and freshwater ecotoxicity. The LFP battery system consumes a higher 
amount of resources compared to the VRF system. The LFP system is able to store electricity with lower 
losses consequently its application is recommended in situations electricity is a scarce good. When 
electricity is over produced, for instance by PV, the VRF is recommended due to its lower variable costs 
and lower resource depletion. 
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APPENDIX 
 

TABLE 1 
SCENARIO I RESULT 

 

 
 

TABLE 2 
SCENARIO II RESULT 

 

 

electricity generation [kWh/a] IPV-Base IPV-VRLA IPV-LFP IPV-VRF ILP-VRLA ILP-LFP ILP-VRF
Total 426,171     427,669     408,204     416,638     474,373     408,236     462,830     
CHP - total 159,764      160,949      164,712      169,701      184,444      164,836      184,010      
CHP - direct use 159,764           159,759           159,740           159,595           155,873           159,764           158,138           
CHP - stored -                   1,190               4,972               10,106             28,571             5,072               25,872             
PV - total 181,074      181,074      181,074      181,074      181,074      181,074      181,074      
PV - used 101,739           106,566           124,235           131,414           151,140           133,382           165,588           
PV - direct use 101,739           101,713           101,737           101,702           101,365           101,740           101,620           

PV - stored -                   4,853               22,498             29,711             49,775             31,641             63,968             

PV - grid feed in 79,335             74,508             56,840             49,661             29,934             47,693             15,486             
Grid - total 85,333        85,646        62,417        65,862        108,854      62,325        97,745        
Grid - direct use 85,333             85,184             60,746             62,341             89,554             49,224             63,177             
Grid - stored -                   463                  1,672               3,521               19,300             13,101             34,568             

electricity stored [kWh/a] IPV-Base IPV-VRLA IPV-LFP IPV-VRF ILP-VRLA ILP-LFP ILP-VRF
Discharge -            181            24,614       23,197       45              36,108       23,901       
Loss, total -            6,325         4,528         20,141       97,602       13,707       100,508     
loss, charge -             1,081               2,002               7,458               16,219             3,422               21,411             
loss, discharge -             36                    1,816               4,822               9                      2,664               4,968               
loss, storing -             5,208               710                  7,860               81,374             7,621               74,129             
Charge -            6,506         29,142       43,338       97,647       49,815       124,409     
CHP - Charge -             1,190               4,972               10,106             28,571             5,072               25,872             
PV - Charge -             4,853               22,498             29,711             49,775             31,641             63,968             
Grid - Charge -             463                  1,672               3,521               19,300             13,101             34,568             

w/o IPV-VRLA IPV-LFP IPV-VRF ILP-VRLA ILP-LFP ILP-VRF
self - supply - degree 61% 63% 71% 72% 71% 73% 76%
autarky degree 75% 74% 81% 78% 58% 83% 63%

electricity generation [kWh/a] IIPV-Base IIPV-VRLA IIPV-LFP IIPV-VRF IILP-VRLA IILP-LFP IILP-VRF
Total 523,413     525,046     501,415     513,470     574,840     491,511     569,550     
CHP - total 174,452      175,630      179,035      183,610      196,719      181,052      202,356      
CHP - direct use 174,452           174,405           174,429           174,388           169,715           174,403           172,549           
CHP - stored -                   1,226               4,605               9,222               27,003             6,650               29,806             
PV - total 181,074      181,074      181,074      181,074      181,074      181,074      181,074      
PV - used 110,553           115,238           137,785           140,939           157,105           162,080           176,948           
PV - direct use 110,553           110,510           110,562           110,557           110,155           110,498           110,320           

PV - stored -                   4,728               27,223             30,382             46,949             51,583             66,628             

PV - grid feed in 70,522             65,837             43,290             40,135             23,970             18,994             4,127               
Grid - total 167,886      168,341      141,306      148,785      197,047      129,384      186,120      
Grid - direct use 167,886           167,856           139,109           143,903           172,960           104,036           130,462           
Grid - stored -                   485                  2,196               4,882               24,087             25,347             55,658             

electricity stored [kWh/a] IIPV-Base IIPV-VRLA IIPV-LFP IIPV-VRF IILP-VRLA IILP-LFP IILP-VRF
Discharge -            120            28,790       24,042       60              63,954       39,560       
Loss, total -            6,318         5,234         20,444       97,979       19,626       112,532     
loss, charge -                   1,069               2,337               7,656               16,284             5,742               26,175             
loss, discharge -                   24                    2,124               4,998               12                    4,718               8,223               
loss, storing -                   5,225               773                  7,790               81,683             9,166               78,134             
Charge -            6,438         34,024       44,486       98,039       83,580       152,092     
CHP - Charge -                   1,226               4,605               9,222               27,003             6,650               29,806             
PV - Charge -                   4,728               27,223             30,382             46,949             51,583             66,628             
Grid - Charge -                   485                  2,196               4,882               24,087             25,347             55,658             

self - supply - degree 54% 55% 63% 63% 62% 70% 67%
autarky degree 63% 62% 68% 65% 51% 74% 57%
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TABLE 3 
SCENARIO III RESULT 

TABLE 4  
NOMENCLATURE AND UNITS 

Nomenclature 
Ah-model Ampere-hours throughput model 
BDCkWh Battery Degradation Costs 
BEV Battery Electric Vehicle 
BMS Battery Management System 
CHP Combined Heat and Power System 
DOD Depth of Discharge 
EPEX European Energy Exchange 
ESS Electricity Storage System 
ILCD International Reference Life Cycle 

Data System 
LCA Life Cycle Assessment 
LFP Lithium-Ion-Iron-Phosphate

Battery 
Oemof  Open Energy Modelling 
Framework 
PV Photovoltaic System 
SOC State of Charge 
VRF  Vanadium-Redox-Flow Battery 
VRLA Valve-Regulated-Lead-Acid

Battery 

Units 
Ah Ampere hours 
CO2-Eq Carbon Dioxide Equivalents 
CTUh.  Comparative Toxic Unit 
kWhinst Kilowatt Hours Installed 
kWhLT Kilowatt Hours Lifetime 

Throughput 
Sb-Eq  Antimony Equivalents 

electricity generation [kWh/a] IIIPV-VRLA IIIPV-LFP IIIPV-VRF IIILP-VRLA IIILP-LFP IIILP-VRF
Total 418,585  402,920   416,350  471,223   397,041  463,650   
CHP - total 190,301    187,547   193,583    230,223   194,644    228,354   
CHP - direct use 171,531   171,531    171,531   167,060    171,531   169,114    
CHP - stored 18,770   16,016    22,052   63,163    23,113   59,240    
PV - total 181,074    181,074   181,074    181,074   181,074    181,074   
PV - used 128,108   131,433    135,106   171,714    147,713   172,983    
PV - direct use 103,632   103,632    103,632   103,632    103,632   103,632    

PV - stored 24,477   27,801    31,475   68,082    44,081   69,351    

PV - grid feed in 52,966   49,642    45,968   9,361    33,362   8,092    
Emergency Generation - total 47,210   34,299  41,693   59,925  21,322   54,222  
Emergency Generation - direct use 47,210   34,299    41,693   51,760    21,322   47,477    
Emergency Generation - stored -   -  -   8,165    - 6,745 

electricity stored [kWh/a] IIIPV-VRLA IIIPV-LFP IIIPV-VRF IIILP-VRLA IIILP-LFP IIILP-VRF
Discharge 24,464    37,375   29,981    24,384   50,352    26,614   
Loss, total 18,783    6,442  23,546    115,026   16,843    108,722   
loss, charge 7,183   3,010    9,212   23,156    4,616   23,291    
loss, discharge 4,873   2,757    6,232   4,857    3,714   5,532    
loss, storing 6,727   675    8,101   87,013    8,512   79,898    
Charge 43,247    43,817   53,527    139,410   67,194    135,336   
CHP - Charge 18,770   16,016    22,052   63,163    23,113   59,240    
PV - Charge 24,477   27,801    31,475   68,082    44,081   69,351    
Emergency Generation - Charge -   -  -   8,165    - 6,745 

IIIPV-VRLA IIIPV-LFP IIIPV-VRF IIILP-VRLA IIILP-LFP IIILP-VRF
self - supply - degree 76% 79% 79% 85% 86% 87%
autarky degree 82% 88% 82% 64% 90% 66%


