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Non- Parametric Statistics: A Set of Statistical Techniques to 
Compare Two or More Independent Populations 

Athanasios Vasilopoulos 
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Nonparametric methods are a powerful research tool used by investigators in practically every field of 
human activity. Nonparametric methods are useful alternatives to the parametric methods (when 
parametric methods are not available) and their use and application is made much easier when statistical 
tools, like MINITAB, are used to solve problems completely or partially. The techniques of we discuss in 
nonparametric statistics fall in the following 5 categories: 

I) Tests for Randomness
II) Chi-Square Tests
III) Tests for Matched Pairs
IV) Tests to Compare 2 or More Independent Populations
V) Spearman Rank Correlation Test

MINITAB examples are given for: Tests of Randomness, Tests for Matched Pairs (Wilcoxon Sign Rank 
Test, Friedman Test) and Tests to Compare 2 or More Independent Populations (Mann-Whitney Test, 
Kruskal-Wallis H Test). 

Keywords: Parametric Methods, Non-Parametric Methods, Tests for Randomness, Chi-square tests, Tests 
for Matched Pairs, Tests to Compare 2 or more Independent Populations, and the Spearman Rank 
Correlation Test 

Problem Statement 
When researchers are testing the validity of claims during their research, and no Parametric methods 

exists to perform such tests, what do they do? The answer is to use Non-Parametric methods which may 
take many forms. 

Approach 
We divide the many non-parametric techniques in five (5) categories, discuss representative 

techniques in each category and, where possible, compare the manual Non-Parametric methods with the 
MINITAB Non-Parametric methods, if they are available. But in this paper, we discuss the Non-
Parametric methods of category IV above, (i.e. Tests to Compare two or more Independent Populations), 
having discussed the techniques of the other categories in previous papers. 

Result 
The results indicate that Non-Parametric methods are very powerful and useful alternatives to the 

Parametric Methods, when Parametric Methods are not available. Many examples, throughout the paper, 
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show how the various tests are applied and the use and application of the statistical tool MINITAB shows 
how easily these tests can be performed. 

Conclusions/Recommendations  
When parametric methods are not available, a useful alternative approach is to us Non-Parametric 

methods which, as shown, provide the solution to many research problems. Use the Statistical too 
MINITAB, to make the application of these Non-Parametric techniques procedural.   

INTRODUCTION 

Most of the statistical methods that people are familiar with are referred to as Parametric Statistics 
and the term is used to indicate that we have knowledge of the nature of the population from which the 
sample data set: x1, x2, x3,, xn, which we are about to analyze, came from. For example, when we use the 
EMPIRICAL RULE, we make the assumption that our sample data came from a normal distribution. 
However, when we use CHEBYCHEV’S INEQUALITY, namely: 

,11]ˆˆ[ 2k
skxXskxP  for k>1 (1) 

which states that the probability that a random variable X is between k standard deviations of the mean 

( )x is at least 2

11
k

, the result is valid for all possible distributions of the random variable X [12]. 

Such a “distribution-free” result, and similar other tests that we will discuss in this paper, are called 
non-parametric statistics. In these nonparametric tests the parameters of the distribution continue to be 
important. What is not important is the nature of the distribution of the population from which the sample 
came from. That is these tests are valid whether the population distribution is Normal, Binomial, 
Uniform, Exponential, etc. As we discuss the availability and development of nonparametric statistics, we 
will discuss several tests which are equivalent to familiar parametric tests. When this is the case it is 
natural to ask: Which test is preferable, the parametric or nonparametric one? The answer is: the 
parametric test, because for the non-parametric tests to achieve the same results (i.e. the same power) 
require a much larger sample (i.e. nonparametric methods are less efficient than parametric methods). 

But there are many situations in which the form (or nature) of the population distribution is not well 
known and the nonparametric method is the only meaningful alternative. This is also the case when no 
parametric alternative exists. 

However, even though the computations on nonparametric statistics are usually less complicated than 
those for parametric statistics, the calculations for many nonparametric statistics can become very tedious, 
when the samples are large. 

Another disadvantage for most nonparametric methods is the fact that the null hypothesis (H0) being 
tested is less precise than in the parametric methods, and the conclusions drawn may be somewhat vague. 
But, even with these drawbacks, nonparametric statistics are very useful, and it is important to know 
when and where they can be used, and the conclusions which can be drawn from their application. 

DISCUSSION 

Before starting our discussion on Non- Parametric Statistics, let us do a Parametric Statistics example 
to make the comparison easier to understand. 

Example 1: - The claim is made that “the mean Carbon dioxide level of air pollution in New York City is 
4.9 particles per cubic foot”. 
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Does a random sample of 25 readings (which produced an =5.1 and =2.1) present sufficient evidence 
to accept or reject this claim at = 0.05?  

Also construct a 95% Confidence Interval on and compare the results of the 2 solutions. Then, the 
hypothesis Test solution is:  
1) Ho : =  4.9 vs H1:   4.9
2) = 0.05( and /2 = 0.025)
3) The estimator for is and, because  is not known and n= 25<30,

 =tn-1 = t24 distributed.
4) Rejection region/Acceptance Region

-2.064        
5) Value of test statistic = t* =  = = =  = 0.476 

6) Since t* falls outside of RR, We do not reject Ho:  = 4.9
7) Therefore, the mean Carbon Dioxide level of air pollution in New York City is

= 4.9.
We can also construct a Confidence Interval on  using the equation  

P[ -tn-1( /2)  ( )<=  <=  +tn-1( /2)  ( )] = 1-  which , because = 5.1, tn-1 ( /2) = t24(0.025) = 2.064, 

 ( )= = 2.1/ = 2.1/5 = 0.42 becomes upon substitution  

P [ 4.23   5.97] = 0.95 

Then, since the hypothesis value of  = 4.9 falls INSIDE of this confidence interval, Ho:  = 4.9, is not 
rejected. This is the same conclusion we reached from the hypothesis Test solution to the problem, above. 
The nonparametric statistics available are usually grouped in 5 categories, as shown in the table below, 
which also shows corresponding parametric tests, when they exist.  
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TABLE 1 
EQUIVALENCY OF NON-PARAMETRIC AND PARAMETRIC TESTS 

 NON-PARAMETRIC TESTS CORRESPONDING PARAMETRIC 
TESTS 

I) TESTS FOR RANDOMNESS
1) Runs Tests

a) Small Sample Runs test
b) Large Sample Runs test

2) Runs Above and Below the Median
3) Runs Up and Down
4) The Von Newmann Ratio Test for Independence

II) CHI-SQUARE TESTS
1) Tests on Frequencies

a) Tests on the Frequency of 2 classes
b) Tests on the Frequency of more than 2

classes
2) Tests on Independence – Contingency Tables
3) Tests on Homogeneity -  Are 2 or more

Independent random samples drawn from
the same population?

4) Tests on Goodness of Fit
a) For the Uniform Distribution
b) For the Normal Distribution

5) Kolmogorov-Smirnoff Statistic   - A more
appropriate goodness of Fit test (than 2 )

III) TESTS FOR MATCHED PAIRS
1) The Sign test - Uses only the sign of the

difference
2) The Wilcoxon Signed test  - Uses both sign

of difference and rank
a) Small sample (n < 16)
b) Large Sample (n  16)

3) Friedman test for k paired samples
IV) TESTS TO COMPARE 2 (OR MORE)

INDEPENDENT POPULATIONS
1) The Wald-Wolfowitz test
2) The Mann-Whitney U test

a) Small Sample Case
b) Large Sample Case

3) The Kruskal-Wallis H test for comparing
k(k>2) independent random samples

V) CORRELATION
1) Spearman’s Rank Correlation Coefficient (for

ordinal data

t-test for paired data

Randomized block design 

t-test to compare 2 independent
samples, from 2 different populations

One-Way ANOVA 

Pearson Product-Moment  
Correlation Coefficient 

Note: Because we have previously discussed “TESTS FOR RANDOMNESS”, “CHI-SQUARE TESTS” and 
“TESTS FOR MATCHED PAIRS” in other papers/presentations, the topic of this paper will be the Non-Parametric 
Methods available for “TESTS TO COMPARE TWO OR MORE INDEPENDENT POPULATIONS” and how they 
compare to the corresponding parametric methods. 
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Example 2: A parametric method for testing the equality of two means ( ), 
Problem:  The claim is made that the mean reported Annual Earnings of Carpenters and House painters is 
the same. 

I) Use the data of the table to test the validity of this claim, at =0.05

CARPENTERS PAINTERS
n1=12 
x1=16,000 

=565,000 
=751.6698189 

n2=15 
x2=15,400 

=362,500 
 =602.0797 

II) Also construct a 95% confidence Interval on  and compare the two solutions.
Since n1, n2 30 & 1, 2   are not known, = x1 - x2   is    tn1+n2-2 =t25, if we can show that =

Solution: First we need to test H0: =1 vs H1: 1to see if  = ,because only then the problem H0: 

=0 vs H1: 0 has a valid solution. 

SOLUTION OF THE HYPOTHESIS TESTING PROBLEM 

To test the hypothesis: H0: =0 vs H1: 0 (when n1 and n2 are not simultaneously large), we must 
first test the Hypothesis. 

H0: =1 vs H1: 1 

Then: 
1) If H0: =1 is accepted, the problem: H0: =0 has a solution 

2) If H0: =1 is rejected, the problem:H0: =0 has no solution! 

The test to check =   follows: 
H0: =1 vs H1: 1 

=0.05 & =0.025 

3) The estimator  for is  which is  distributed.
4) Rejection Region/Acceptance Region (RR/AR)

 (0.975)           (0.025)  (0.025)=3.05  

=   

=  = =0.3   
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5) =  =  = 1.559 

6) Do not reject H0: b/c  falls outside RR 

7) Therefore   & and the Problem H0: =0 has a valid solution, as shown below: 

(1) H0: =0 VS H1: 0
(2) =0.05 (and /2=0.025)
(3) Estimator of  is  ( = - =16000-15400=600) which ,b/c: , <30, ,  are unknown but

= (shown above with an F-test) makes / ( )  tn1+n2-2 = t12+15-2 = t25, 
distributed.

with: ( )= =260.26, 

and E ( )= =0 

(4) REJECTION REGION/ACCEPTANCE REGION(RR/AR)

(5) Value of test statistic= t*= = =2.305 

(6) Since t* is in the Rejection Region, we reject H0: =0
(7) Conclusion: The average (Reported) Income of Carpenters and House painters is not the same.

( )

III) SOLUTION OF THE CONFIDENCE INTERVAL PROBLEM
Since: x= x1- x2=16000-15400=600,
tn1+n2-2( /2) =t25(0.025) =2.0595, ( x) =260.26, and 1- =0.95, the CI is obtained from:
P [ - tn1+n2 -2( /2) )   x + tn1+n2 -2( /2) )] =1-
When - t25 (0.025), and 1- =0.95 are substituted in the equation above,
we obtain: P [600-2.0595(260.26) 600+2.0595(260.26)] =0.95
or:             P[63.86 1,136.14] =0.95

Since the Hypothesized value, = 0 =0, is outside of this interval, H0 is again REJECTED, and we 
conclude that the Average (Reported) income of carpenters and House Painters is not the same 

Non-Parametric Tests to Compare 2 or More Independent Populations 
In this section we discuss the following 3 nonparametric tests: 

1) The Wald-Wolfowitz Test,
2) The Mann-Whitney U test, and
3) The Kruskal-Wallis Test

The first 2 tests are non-parametric equivalent to the t-test for testing the equality of the means of two 
independent populations (see example 2 above), while the third test is capable of testing the equality of 2 
or more populations and, as such, is equivalent to the one-way ANOVA procedure. 
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The Wald- Wolfowitz Test 
Assume that x1, x2,…,xn1 and y1,y2,…,yn2 are independent random samples from 2 populations. For 

this test the null hypothesis (H0) is that the 2 independent random samples 
come from populations with identical distributions, or: 

H0: f1(x)=f2(x)   vs.     H1:f1(x)  f2(x),  (2) 

where f1(x) and f2(x) are the corresponding probability functions. The test begins by ranking the 
observations in the two samples, in a single array, where we represent an observation by X if it comes 
from sample 1 and by Y if it comes from sample 2. In such an array we then count the number of runs 
(i.e. the number of X and Y alternating sequences). In such an ordering of observations from 2 samples, 
the minimum number of runs is 2 and the maximum is n1+n2. If the 2 samples are drawn independently 
from 2 populations with identical distributions the observations, when ranked, will be well mixed, and the 
number of runs should be large. But if the samples are drawn from 2 populations with different 
distributions, the number of runs should be small. If we let R represent the number of runs in an ordered 
sequence of n1+n2 observations, R is a random variable with a rather-complicated. Probability function 
P(R), with possible values for R=2,3,4,…,( n1+n2), 

1
2

)(
21

21

nn
nnRE  (3) 

and: 

)1()(
)2(2)(

21
2

21

212121

nnnn
nnnnnnR (4) 

To test H0 (given by equation (2)), for some  value, we need to find an integer R0 such that: 

0

2

,)(
R

R
RP  as closely as possible  (5) 

H0 will be rejected if R=observed number of runs R0. Therefore, the rejection region is the lower one-
sided region because H0 should be rejected when the number of runs is small. When n1 10 and n2 10, R 
is approximately normally distributed with E(R) and (R) given by (3) and (4) respectively. Therefore, 
when the samples are large, the Wald-Wolfowitz test can be performed using the test statistic 

)(
)(

R
RERz (6) 

Note: For small samples we need to use the “complicated” P(R) function which is not given in this paper. 
[1,3] 

Example 3 
Suppose we have the 2 samples, X and Y, and: X= sample 1: 18, 25, 30, 35, 38, 40, 45, 52, 60, 68, 74, 

80 (n1=12) and Y= sample 2: 11, 16, 22, 23, 27, 39, 42, 44, 55, 65 (n2=10) and wish to test to see if these 
observations come from populations with identical distributions. Combining these observations into a 
single ranked array of X and Y 
observations, we obtain: 
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YY    X    YY    X    Y    XXX    Y    X    YY    XX    Y    X    Y    XXX 

The observed number of runs is R=14 and, with n1=12 and n2=10, E(R)=11.9 and (R)=2.269. Then, 
because n1=12 10 and n2=10 10, R is approximately normally distributed, and: 

926.0
269.2

9.1114)(
R

RERz . If =0.05, the rejection region is in the lower tail and zcritical= -z =-

z0.05=-1.65; Since z*> zcritical, H0 is not rejected and we conclude that the X and Y observations come from 
identical distributions. 

Note: We can also state the rejection of H0 directly in terms of R, by stating: 

Reject H0 if: z
R

RERz )(
 , 

from which we obtain: R E(R)-z  (R)  (7) 

or: R 8.16, since E(R)=11.9, and (R)=2.269, and -z = -1.65. Since the observed R=14>8.16, H0 is not 
rejected. 

The Mann-Whitney U Test 
This test, even though it is in many aspects similar to the Wald-Wolfowitz test, also differs from it in 

the following 3 points: 
1) A rank is assigned to the ordered sequence of the n1+n2 observations coming from the X and Y

observations.
2) The alternative hypothesis (H1) may be either 2-sided or 1-sided, and
3) The alternative hypothesis implies only a difference in the central tendency of one distribution

relative to the other, and does not suggest a difference in Dispersion, or Skewness, or Kurtosis, as
is the case with the Wald-Wolfowitz test.

Note: Therefore, the Mann-Whitney test should be used if we wish to compare only the central tendencies 
of 2 distributions, and the Wald-Wolfowitz test if broader comparisons are to be 
made. The 2-tailed hypotheses being tested here are: H0: The 2 populations are identical     vs.       H1: The 
2 populations are not identical. To implement this test, we combine the 2 sets of observations to form a 
single ranked set, consisting of n1+n2 observations. Then a rank is assigned to each observation, starting 
with 1 and ending with n1+n2. If ties occur in the ordered sequence, the average of the ranks is assigned to 
the tied observations. For example, if the values for the 4th, 5th, and 6th observations are the same, then 

each of the observations is assigned the rank= 5
3

654
.

The sum of the ranks of values from populations 1 and 2 are designated by R1 and R2 respectively, and 
this test determines if an observed arrangement of ranks can lead to the conclusion that the 2 sets of 
observations (X,Y) come from populations which have the same central tendency (i.e. do not reject H0) or 
different central tendency (i.e. Reject H0).This test is implemented differently for small and large 
samples: If n1 10 and n2 10, the samples are considered small while, if both n1>10 and n2>10 the samples 
are considered large and the variable U (i.e. the Mann-Whitney test statistic) is approximately normally 
distributed, with: 

2/)()( 21nnUE    , (8) 

and     
12

)1()( 2121 nnnnU   , (9)
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and the normal distribution can be used to test the validity of H0 (the variable U is defined below). The 
next step in the procedure, after R1 and R2 have been obtained, is to calculate: 

1
11

211 2
)1( RnnnnU     , (10) 

2
22

212 2
)1( RnnnnU   , (11) 

and       U = minimum 21 ,UU (12)

a) Small Sample Case
The exact distribution of U has been derived and is tabulated, but the table is very extensive and is not

given here. This table contains p-values for U. To determine the p-value from this table for a calculated 
Uvalue, we let: n1= minimum (sample1, sample 2), n2= maximum (sample1, sample 2), locate the U value 
under the U0 column, and at the intersection of  U=U0 and n1, for the specified n2 value, read the p-value 
for a one tailed test. For a 2-tailed test the value shown in the table should be doubled. [2,3,5,8] 

Example 4 
Suppose a large corporation is conducting a study to determine if male and female employees (of 

similar backgrounds) receive equivalent compensation, and 8 female and 9 male employees were 
selected. Suppose from the combined set of ranked observations we then obtained: R1=57, R2=96, U1=51, 
U2=21, and U=min (U1, U2) =21 Then from the table, with n1=8 and U=21 and n2=9, we obtain the p-
value of 0.0836 which, for a 2-tailed test becomes: 2(0.0836) =0.1672. Because p=0.1672> =0.05, H0 is 
not rejected, and we conclude that the two random samples come from populations with identical central 
tendencies. 

b) Large Sample Case
When n1>10 and n2>10, the statistic U is approximately normally distributed with E(U) and (U),

given by equations (8) and (9) respectively.  Therefore, when the 2 samples are large, 

 the Mann-Whitney test can be performed using the z* test 
)(

)(:.
U

UEUzei  and, for 

        a 2-tailed test, H0 will be rejected if: ,2/
* zz  or ,2/

* zz  for a given  value. 

Example 5  
A two-year study was conducted to determine whether there is a difference in the number of colds 

experienced by smokers and nonsmokers. The random sample selected consisted of 14 nonsmokers and 
12 smokers and the recorded data represent the number of colds observed during the two-year study 
period: 

Nonsmokers 1 0 2 7 3 1 2 2 4 3 5 0 2 1 
Smokers 4 2 6 5 8 10 8 7 6 4 9 3 

Use the Mann-Whitney U statistic to determine whether there is reason to believe that these random 
samples come from populations with different distributions, at  = 0.05. (Hint: Use the large-sample 
method because 1n  > 10 and 2n > 10. Form a single array of the observations and find:  
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1R = 4 + 1.5 + 8 + 21.5 + 12 + 4 + 8 + 8 + 15 + 12 + 17.5 + 1.5 + 8 + 4 = 125. 

2R = 15 + 8 + 19.5 + 17.5 + 23.5 + 26 + 23.5 + 21.5 + 19.5 + 15 + 25 + 12 = 226 

1U = 
2

)15(14)12()14(
2

)1(
1

11
21 Rnnnn - 125 = 168 + 105 – 125 = 273 – 125 = 148

2U = 
2

)13(12)12()14(
2

)1(
2

22
21 Rnnnn - 226 = 168 + 78 – 226 = 246 – 226 = 20

and U = min( 1U , 2U ) = min (148,20) = 20; E(U) = 
2

)12()14(
2

21 nn
= 84 and 

378)27()14(
12

)27()12()14(
12

)1(
)( 2121 nnnn

U = 19.44, and 

Z* = 29.3
44.19
64

44.19
8420

)(
)(

U
UEU

. Since for  = 0.05, the rejection regions are (for a 2-tailed 

test): 1rcZ  1.96 and 2rcZ 1.96, 0H is rejected because Z* falls in the rejection region, and we 
conclude that the random samples came from different populations. The MINITAB output for this 
example is shown below: 
MTB > set c1 
DATA> 1    0   2   7   3   1   2   2   4   3   5   0   2   1 
DATA> end 
MTB > set c2 
DATA> 4    2   6   5   8   10  8   7   6   4   9   3 
DATA> end 
MTB > Mann-Whitney 95.0 c1 c2; 
SUBC>   Alternative 0. 

Mann-Whitney Test and CI: C1, C2 
C1         N =  14     Median =       2.000 
C2         N =  12     Median =       6.000 
Point estimate for ETA1-ETA2 is      -4.000 
95.2 Percent CI for ETA1-ETA2 is (-6.000,-2.001) 
W = 125.0 
Test of ETA1 = ETA2  vs  ETA1 not = ETA2 is significant at 0.0011 
The test is significant at 0.0010 (adjusted for ties)) 
The two solutions (hand and MINITAB) are the same ( 1R = W = 125 for both and, because 
p = 0.0011 <  = 0.05, 0H is rejected.) 

The Kruskal-Wallis H-test for Comparing k (k 2) Independent Samples 
The Kruskal-Wallis test is the nonparametric equivalent to the one-way analysis of variance 

(ANOVA) where we are interested in testing the null hypothesis 

H0: 1 = 2 = 3 = … =  k 
vs  (13) 
H1: The means are not all equal, based on k mutually independent random samples, drawn from k 
populations which are assumed to be normally distributed. The Kruskal-Wallis test can be used to analyze 
k ordinal data sets and does not depend on any assumption about the shape of the populations from which 
the data was drawn from. But it does depend on the assumption that the k groups (or data sets) are 
independent and that the individual items of each group are obtained randomly. 
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The Kruskal-Wallis procedure tests the following H0 / H1 hypotheses:

H0: the k populations are identical 

vs  (14) 

H1: At least one of the k populations is different 

However, the Kruskal-Wallis test is particularly sensitive to differences in central tendency and, as 
such, it is regarded as an extension of the Mann-Whitney U test, which compares the “identicality” of 2 
populations while the Kruskal-Wallis H test is capable of comparing the “identicality” of k populations, 
where k > 2. We let n1 be the sample size from population 1, n2 the sample size of population 2, …, ni the 
sample size of population i, and nk the sample size of population k, with: 

N = n1 + n2 + … ni + … + nk = 
k

i
in

1

,  (15) 

where N is the total number of all observations from the k populations. The procedure for computing a 
Kruskal-Wallis H statistic begins by combining all observations in the k samples to form a single set of N 
observations, which are then ranked in order of increasing magnitude. The smallest value is given the 
rank of 1, and the highest the rank of N. When ties occur in ranking, we assign the average of the 
adjoining ranks to each of the tied observations. For example if 2 observations are tied and their ranks 
should be 9 and 10, we assign to both of these observations the rank of 5.92)109( . Similarly, if 3 
observations are tied and their ranks should be 12, 13, and 14, we assign to all 3 observations the rank of 

13
3

141312
.

Under the assumption that the k samples come from populations with identical distributions, the Kruskal 
Wallis H statistic is defined by: 

)1(3
)1(

12
1

2

N
n
T

NN
H

k

i i

i (16)

where: k = number of populations being compared 
N = total number of observations from the k populations 

 Ti = total (sum) of ranks in population (group) i 
 ni = number of observations in population i 

H = Kruskal-Wallis Test statistic 

The H, defined by (16), is approximated by a chi-square distribution with DOF = Degrees of 
Freedom = k – 1, as long as ni 5 for all populations. In testing the validity of (14), for a specified value 
of , the rejection region is the upper tail of the chi-square distribution and H0 will be rejected if H > .

)(2
1k If the number of tied observations is large (in the combined single set of N observations), an 

adjusted value of H, defined by (16) should be calculated and used. If we let Hadj represent the adjusted H 
value, we define Hadj by: 

Hadj = 
M
H

(17)
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where M = 
NN

tt
c

j
jj

3
1

3

1  , (18) 

and: c = number of tied sets 
tj = number of tied observations in set j 
N = total number of observations from the k populations 
M = correction factor 

As can be seen from (18) and (17) the effect of the correction factor M is to always increase the value 
of H defined in (16) because M is always less than 1. But this effect is usually small, even if there is a 
large number of ties, as the following situation illustrates: 
Suppose in a given problem there are 4 sets of 2 tied observations, 2 sets of 3 tied observation, and one set 
of 4 tied observations, and N = 40. 

Then, from (18)  
4040

)44(1)33(2)22(41 3

333

M

= 998.0002.01
960,63

1321  , 

and   Hadj = HH
M
H 002.1

998.0
The H test compares well with the F test in the Analysis of Variance. However, if the samples are large, 
the ranking of the samples is a tedious job, unless a computer is used to sort the data. [1,2,3,5,9] 

Example 6 
To test the claim that there is no significant difference in the amount of customer’s initial deposits 

when they open savings accounts according to geographic region in the USA, an analyst selects savings 
and loan offices of equal size from 4 regions of the United States, and located in areas having similar 
economic and population characteristic. The following data represent the dollar amounts of adult 
customers selected randomly: 

Region 1 Region 2 Region 3 Region 4 
$ 1200 (23) $ 225  (5) $ 675  (15) $ 1075 (21) 
450 (12) 950    (19) 500     (13) 1050    (20) 
110 (2) 100     (1) 1100   (22) 750 (17)
800 (18) 350     (9) 310      (7) 180 (3)
375 (10) 275     (6) 660     (14) 330 (8)
200 (4) 680 (16)

425 (11)

1n  = 6 

1T
=23+12+2+18+10+4=69 

2n  = 5 

2T =5+19+1+9+6=40 
3n  = 5 

3T =15+13+22+7+ 
 14=71 

4n  = 7 

4T
=21+20+17+3+8+16+11=96 

Use the Kruskal-Wallis H test to test the claim in 0H that there is no significant difference in the 
initial amount of deposit because of geographic region, at  = 0.05. 



Journal of Strategic Innovation and Sustainability Vol. 14(6) 2019 137 

Solution: Form a single array of ordered values, assign ranks to the ordered values and then find jT  = 

sum of ranks in each region j, jn , and N = 
k

i
jn

1

. The ranks are shown in the table above in parentheses. 

Also shown are jn  and jT . Then calculate: 

H = 
7

96
5

71
5

40
6

69
)24(23

12 2222

- 3 (24) = 2.745 and compare to 2
3

2
)(1k (  = 0.05) = 7.815; 

Since H < 2
3 (  = 0.05) = 7.815, do not reject 0H , and we conclude that there is no difference in the 

initial amount of deposit because of geographic region. The MINITAB output for this example is shown 
below: 
MTB > set c1 
DATA> 1200 450 110 800 375 200 225 950 100 350 275 675 500 1100    310 660 1075    1050    750 
180 330 680 425 
DATA> end 
MTB > set c2 
DATA> 1    1   1   1   1   1   2   2   2   2   2   3   3   3   3   3   4   4   4   4   4   4   4 
DATA> end 
MTB > Kruskal-Wallis c1 c2. 

Kruskal-Wallis Test: C1 versus C2 
Kruskal-Wallis Test on C1       
C2          N    Median    Ave Rank         Z 
1           6     412.5  11.5     -0.21
2           5     275.0   8.0 -1.49
3           5     660.0  14.2      0.82 
4           7     680.0  13.7      0.80 
Overall    23    12.0 
H = 2.75  DF = 3  P = 0.433 ) 
The two solutions are the same ( H = 2.75 in both and, because p = 0.433 >  = 0.05, 0H is not rejected.) 

V) Spearman Rank Correlation Coefficient
The rank correlation coefficient, rs, was developed by C. Spearman in 1904, and is used to determine

the amount of association between two variables X and Y when their values are ordinal rank numbers, 
with 1 for first, 2 for second, …, and n for the last. 
If we let Xi = rank of individual i on variable X 

Yi = rank of individual i on variable Y  

and         di = Xi - Yi (19) 

then rs is defined as:  

rs = 
)1(

6
1 2

1

2

nn

d
n

i
i

(20) 

where -1 rs 1 
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The sampling distribution of rs is tn-2 and is used to test hypotheses about s, the population parameter 
for which rs can be considered as its estimator. 

The interpretation of rs values is similar to the interpretation of r values. If rs is near +1, high positive 
correlation exists between the variables and indicates that high values of one variable are associated with 
high values of the other variable. If rs is near -1, high negative correlation exists between the variables and 
indicates that high values of one variable are associated with low values of the other variable. If rs is near 
0 the 2 variables have little association between them. The process of calculating rs begins by assigning 
ranks to the X and Y values, and then using equation (20) above, which is derived from the definitional 
equation of r, assuming that there are no ties in the ranks. 
Example 7 

Compute Spearman’s rank correlation coefficient for the following variables to determine the degree 
of association between the 2 variables, and then test 0H : s = 0 vs 1H : s 0, 
at  = 0.05 

X 
values 

23 (3) 41 
(10.5) 

37 (8) 29 (6) 25 (4) 17 (1) 33 (7) 41 
(10.5) 

40 (9) 28 (5) 19 (2) 

Y 
values 

201 
(2) 

259 
(11) 

234 
(7) 

240 
(8) 

231 
(6) 

209 
(3) 

229 
(5) 

246 (9) 248 
(10) 

227 
(4) 

200 
(1) 

First rank the X and Y values separately (the ranks are shown in parentheses) and then take the 
difference of the corresponding ranks, square this difference and add them to obtain:  

n

i
id

1

2 = 1² + (-0.5)² + 1² + (-2)² + (-2)² + (-2)² + 2² + (1.5)² + (-1)² + 1² + 1²  

   = 1 + 0.25 + 1 + 4 + 4 + 4 + 4 + 2.25 + 1 + 1 +1 = 23.50. 

Then, 
1320
1411

)1121(11
)50.23(61

)1(
6

1 2

2

nn
d

r i
s = 1 – 0.1068 = 0.893. If we calculate 

sr = 1 - 
1)1(

6
1 2

2

nn

di  = 1 - 
1220

5.231
1)1320(

6
1

5.23
= 1 – 0.1063 = 0.8937; 

Then: 
21

2

s

s

r

nr
 is 92 ttn . To complete the testing of the hypotheses: 0H : s = 0 vs 

1H : s  0, we let t* =  
21

2

s

s

r

nr
= 

448665.0
6811.2

)8937.0(1

)3(8937.0
2

= 5.9757 and compare to 9t (0.025) = 

2.262.  
Since t* > 9t (0.025) we reject 0H : s = 0 and conclude that the degree of association between the 2 
variables X and Y is very strong. [1,2,3,5,8,9,12] 
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CONCLUSIONS 

We have discussed many nonparametric tests in which the parameters of the distribution continue to 
be important but the nature of the distribution, from which the sample data we used in our analysis came 
from, is not important and is not needed to perform these tests. This is in contrast to the parametric tests 
which depend very much on the nature of the population from which out data set came from. 

The nonparametric tests that we have discussed fall into the following 5 categories
I. Tests of Randomness
II. Chi-Square Tests
III. Tests for Matched Pairs
IV. Tests to Compare 2 of more Independent Populations
V. Spearman Rank Correlation Test

But in this paper, we have discussed only the technique of parts IV &V. 
Some of these non-parametric tests have corresponding parametric tests; others do not!
Nonparametric methods can solve the same type of problems that parametric methods can
solve (but with reduced efficiency) and can solve additional problems when no parametric
methods are available.
Many of the nonparametric tests we discussed depend on the number of runs in a sequence of
observations.
The use of a Statistical Software tool, like MINITAB, simplifies the application of these tests
considerably. Unfortunately, not every nonparametric test is supported by MINITAB yet.
We have shown in several examples, where MINITAB was applicable, that the hand and
MINITAB solutions are identical. Therefore, MINITAB should be used in nonparametric
applications, where applicable.

MINITAB uses the p-value to decide whether to reject or not reject a hypothesis.         
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