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Achieving net-zero emissions is one of the most challenging goals of our time, requiring large-scale 

integration of renewable energy (RE) into national energy supply chains. This demands new competencies 

for firms to preserve their competitive advantages in rapidly evolving market environments, often called 

dynamic capabilities. A promising technology for integrating, scaling, and diffusing renewable energy 

within energy supply chains is artificial intelligence. However, the literature on AI-renewable energy 

supply chains is still in its early stages and often lacks broader theoretical development or managerial 

insights. In response, we introduce a theoretical framework to identify and develop AI-based dynamic 

capabilities in renewable energy supply chains through a case study approach. Supply chain predictability 

and optimization, key components of sensing and seizing capabilities, are crucial for developing effective 

renewable energy supply chains. Our study provides valuable insights also for practitioners aiming to 

establish AI-driven renewable energy supply chains. 
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INTRODUCTION 

 

The increasing atmospheric CO2 levels drive many nations to pursue a 100% renewable energy target 

by 2050, aiming for carbon neutrality to mitigate climate change (Liu et al., 2022; Hannan et al., 2021). In 

addition to environmental pressures, geopolitical risks and volatile gas prices are prompting major fossil 

fuel importers like the European Union, Japan, and China to ramp up their investments in renewable energy. 

The potential of RE lies in its ability to eliminate harmful emissions (e.g., SO2, CO2, and particulate matter) 

and virtually create a low-cost energy environment for manufacturing (Ahmad et al., 2021; Liu et al., 2022). 

However, for RE to dominate the energy market, its production and distribution must be stable and 

competitive to effectively integrate this volatile, yet affordable, energy source into national energy supply 

chains. Renewable energy supply chains require rethinking energy infrastructure and the long-term 

competitive advantages of companies and countries. Artificial intelligence plays a fundamental role in 

renewable supply chains by autonomously adapting, learning, and generalizing knowledge from new data 

sources and situations to make frequent decisions, identify new patterns, and solve daily problems with 

limited human supervision (Liu et al., 2022; Hoffreumon et al., 2024). Renewable energy supply chains 

and AI have emerged as an important new industrial paradigm. AI can help manage RE variability and 

unpredictability, reduce trading, production, and maintenance costs, stabilize renewable energy supply 

chains, and effectively integrate prosumers into power networks (Liu et al., 2022; Zhang et al., 2022; 

Gawusu et al., 2021). 
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It is of fundamental importance to understand how firms can leverage AI as a "dynamic capability," 

beyond its mere role as a "disruptive technology." Dynamic capabilities, or competences, enable firms to 

effectively exploit resources and maintain a competitive advantage in rapidly changing markets (Teece et 

al., 1997; Vanpoucke et al., 2014). As the renewable energy sector undergoes profound transformations 

through consumer market, regulatory, and technological shifts, together called the "twin transition" to refer 

to digitization and sustainability, there is a need for research on how firms prioritize and develop AI-based 

dynamic capabilities to enhance renewable energy integration in energy supply chains (Liu et al., 2022; 

Zhang et al., 2022). This study focuses on how AI-driven capabilities can strengthen renewable energy 

supply chains. Despite a growing body of engineering and computer science literature and several practical 

examples (Liu et al., 2022; Ahmad et al., 2021; Hannan et al., 2021), the overall literature on AI and 

renewable energy supply chains lacks theoretical saturation, and two important gaps remain. 

First, while managing AI-based capabilities is essential for developing AI-driven renewable energy 

supply chains, we lack knowledge on which AI-based dynamic capabilities are prioritized by firms, which 

AI capabilities specifically support renewable energy supply chains, and how these AI-based dynamic 

capabilities are developed (Craighead et al., 2016; Pournader et al., 2021). AI encompasses a set of 

technologies that offer several capabilities for firms seeking to integrate renewable energy sources into their 

supply chains. For instance, AI can optimize operational costs (Allal et al., 2024; Hannan et al., 2021), 

flexibility of renewable energy power plants (Liu et al., 2022; Hannan et al., 2021); and it can facilitate a 

distributed marketplace of prosumers, enabling bi-directional energy flows in the market (Zhang et al., 

2022). Despite these important benefits, there remains uncertainty about which AI-based dynamic 

capabilities most effectively support renewable energy supply chains and the saliency of relationships 

between these capabilities (Ellström et al., 2022). Understanding these relationships could significantly aid 

in the development of artificial intelligence-based dynamic capabilities for renewable energy supply chains. 

Second, there is currently a lack of guidance and tools to assist firms in making informed decisions 

about how to effectively deploy AI for a renewable energy and zero-emission economy. Without this RE-

AI guidance, efforts to integrate cost-effective renewable energy sources into national energy markets 

become challenging, fragmented, uncoordinated, and ultimately slow. The diffusion and scaling of 

renewable energy can significantly benefit from clear guidance on AI-based dynamic capabilities within 

the renewable energy sector. 

To fill these gaps, our research addresses two research questions: What AI-based dynamic capabilities 

support renewable energy supply chains? And what is their importance in facilitating effective renewable 

energy integration within these supply chains? To answer these two questions, we present a theoretical 

framework for understanding AI-based dynamic capabilities in renewable energy supply chains which 

combines industry experience and real-life cases of renewable energy in distribution and transmission 

through dynamic capabilities as intra-organizational theory. This approach allows us to theoretically 

systematize our empirical knowledge on AI technological drivers in enabling renewable energy supply 

chains (Liu et al., 2022; Gawusu et al., 2021), establishing a link between sustainability and digitalization 

(the previously mentioned “twin transition”) that is of growing importance in the AI-based renewable 

energy studies. We derive our conceptual framework from a multiple case study using empirical analysis 

of secondary data sources, such as press releases, websites, and industry reports (Eisenhardt and Graebner, 

2007). Our AI application cases are selected based on their full implementation within renewable energy 

supply chains, focusing on an empirical analysis of published industry case studies, with third-party 

triangulation and full public disclosure (primarily linked to reports published in compliance with CORDIS 

requirements). 

While engineering and computer science research have made substantial contributions to the design 

and implementation of physical AI infrastructure in renewable energy (Zhang et al., 2022; Ahmad et al., 

2021), our study contributes to the literature on renewable energy supply chains and artificial intelligence 

showing the relevance of the dynamic capability theory as lens. By effectively connecting two previously 

disjointed fields of research, namely the dynamic capabilities view (Teece et al., 1997) and AI-driven 

renewable energy supply chains, this study shows the importance of developing AI-based dynamic 

capabilities for effective renewable energy supply chain strategies. Although the potentials of renewable 
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energy supply chains are increasingly evident in the business practice and academic literature, how to 

develop and scale these potentials through AI has not been discussed in the literature. Our case analysis 

shows that AI is a versatile technology that facilitates renewable energy integration into existing energy 

supply chains. The potential of renewable energy supply chains largely depends on enhanced forecasting 

and optimization. We also highlight several critical contingencies for developing AI-based capabilities in 

renewable energy supply chains. Our work offers theoretical implications for the dynamic capabilities’ 

theory as well as important managerial insights. 

This paper is organized as follows: the next section presents a review of the literature on renewable 

energy supply chains, AI, and dynamic capabilities. We then describe the research design and methodology 

and provide the research findings. We conclude by discussing practical and theorical contributions and 

implications, highlighting the study's limitations and suggesting avenues for future research. 

 

LITERATURE BACKGROUND 

 

Renewable Energy Supply Chains 

Renewable energy supply chains are integral components of green supply chains, as sustainable systems 

cannot exist without incorporating renewable energy sources (Gawusu et al., 2021). These supply chains 

play a critical role in climate change mitigation, aligning with the United Nations Framework Convention 

on Climate Change (UNFCCC) goals, including those outlined in COP 21. The transition away from fossil 

fuels, adopting renewable energy, managing energy price volatility, and improving energy access are key 

aims of virtually all green supply chains (Gawusu et al., 2021). Figure 1 illustrates the five domains of 

renewable energy supply chains, highlighting the critical bi-directional flows that characterize them. 

According to Aslani et al. (2013), renewable energy supply chains encompass supply, generation, 

transmission, distribution, and demand, covering all phases from energy transformation to consumption. 

These supply chains involve multiple sub-chains, characterized by upstream and downstream 

transformation and distribution nodes, each with distinct stakeholders, technologies, and operations. 

Unlike discrete manufacturing supply chains, where physical flows dominate, and information and 

financial flows support, renewable energy supply chains elevate information flows. Physical flows 

encompass the tangible processes of production, transmission, and distribution. In the case of renewable 

energy, these physical flows are entirely standardized and increasingly IT-led. By contrast, information 

flows that cover the collection, transfer, exchange, and analysis of supply chain data (Vanpoucke et al., 

2009) precede and predict physical flows, determining the necessary actions due to wind and solar power's 

intermittent and discontinuous nature. Moreover, unlike conventional energy supply chains, information 

and physical flows in renewable energy supply chains are increasingly bi-directional (Gawusu et al., 2021). 

Consequently, information technology emerges as a key enabler for effective renewable energy supply 

chain management, ensuring the optimization and stability of these systems. 

 

FIGURE 1 

RENEWABLE ENERGY SUPPLY CHAIN DOMAINS AND BI-DIRECTIONAL FLOWS 

(MODIFIED FROM ASLANI ET AL., 2013) 

 

 
 

Due to their cleanliness and inexhaustibility, wind, solar, geothermal, biomass, tidal, and hydropower 

are the most common renewable energy sources. Among them, wind and solar are prevalent in national 

energy mixes and share important characteristics. Both are intermittent, random, and chaotic, distinguishing 

them from other renewable energy sources (Allal et al., 2024; Hannan et al., 2021). These properties 

generate unique challenges—with significant cost implications—for their integration into electricity supply 
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chains. Table 1 presents key barriers and drivers of renewable energy supply chains, focusing on wind and 

solar. 

Supplier integration, customer collaboration, innovation, distributed energy systems, and regulations 

are often discussed regarding renewable energy drivers and barriers (Gawusu et al., 2021). Renewable 

energy's intermittent availability and intensity lead to voltage and frequency fluctuations, resulting in 

asynchronization between energy production and consumption (Liu et al., 2022; Gawusu et al., 2021). 

Consequently, energy storage equipment and grid management become necessary for two main purposes: 

first, to balance supply and demand during periods of low or zero production; and second, to smooth sudden 

“peaks and valleys”—the increases or decreases in voltage and frequency linked to wind and solar energy 

production. 

Additional challenges, such as excess production, electricity reactivity, outages, overloaded energy 

transformers, frequent switching of electrical equipment, and the forecasting and scheduling of production 

and load management, contribute to increased costs associated with renewable energy. All these barriers 

hinder the implementation and diffusion of renewable energy and raise supply chain and operating costs 

relative to non-renewable energy sources.  

Unlike fossil fuels, the marginal cost of renewable energy production is low and is not influenced by 

commodity price volatility or input scarcity. While installation and infrastructure costs can be high upfront, 

the maintenance costs of solar and wind farms are generally lower than those of thermoelectric plants once 

they are operational. Pressure from customers to utilize renewable energy sources, consumer collaboration 

opportunities, and rising consumer demand are also cited as significant drivers of renewable energy. 

Collaboration with customers allows for information and resource sharing, risk reduction, and distribution 

of benefits. It also enhances innovation and sustainability performance in renewable energy supply chains. 

The diffusion of renewable energy enables firms to learn and accumulate sustainable knowledge, evolving 

toward more sustainable practices. Innovation is a key element of green supply chains. 

Wind and solar farms are often location-specific, thriving in areas with necessary geophysical 

characteristics (Liu et al., 2022; Allal et al., 2024). The deployment of decentralized energy sources and the 

evolution toward prosumers have led to the introduction of trading and crediting instruments in the virtual 

grid to facilitate reverse flows on a distributed wholesale level. This, in turn, allows prosumers to trade with 

the grid. 

Finally, several policymaking initiatives have been enacted by governments to promote the diffusion 

of solar and wind electricity. Regulatory compliance, codes of practice, proactive actions to pre-regulation, 

and self-regulation are also strong motivators for renewable energy supply chains. 

 

TABLE 1 

CLASSIFICATION OF DRIVERS AND BARRIERS OF WIND AND SOLAR ENERGY 
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Artificial Intelligence in Renewable Energy Supply Chains 

AI applications can be divided into three categories: technologies that sense various forms of data (such 

as speech, vision, and natural language processing), technologies that learn from data (machine learning), 

and technologies used for decision-making (including expert systems, planning, simulation, modelling, 

scheduling, and optimization) (Pournader et al., 2021). AI can handle extensive and nonlinear data 

processing and analysis, extract insights from patterns, predict outcomes, identify market opportunities, 

adapt to changing conditions, enhance risk management, improve customer engagement, and make 

decisions based on real-time data (Hendricksen, 2023; Liu et al., 2022; Zhang et al., 2022). While AI finds 

application in all renewable energy supply chain domains represented in Figure 1, we focus specifically on 

renewable energy production, transmission, and distribution segments (i.e., renewable energy production 

and grid management), and exclude consumption and energy inventory management (e.g., battery 

optimization) due to their limited diffusion and scale in these latter areas. We examine AI applications in 

supply and demand forecasting, generation, and grid management. 

 

TABLE 2 

APPLICATIONS IN WIND AND SOLAR SUPPLY CHAINS OF AI TOOLS AND METHODS 

 

 
 

In renewable energy production, AI reduces operational costs associated with design, installation, 

maintenance, and performance evaluation. AI applications use large quantities of data (geographical, 

meteorological, demographic) to optimize plant location, size, layout, and component selection, thereby 

minimizing plant life-cycle costs, fixed costs, and optimizing overall supply profiles. AI-optimized designs 

can generate efficiency gains of up to 30%, due to AI’s ability to improve equipment sizing and energy 

yield by up to 20% (Arrieta et al., 2020). AI-led drones equipped with computer vision technology perform 

inspections, site evaluations, land monitoring, and early maintenance warnings, leading to cost savings of 

up to $100 000 per megawatt installed by reducing labour and equipment expenses (Melnikov et al., 2018). 

Real-time data from sensors can ensure effective equipment installation and maximize system performance 

by design. Automated AI design processes can reduce project timelines and labour costs by up to 40% 

(Melnikov et al., 2018). AI can analyse real-time operational data and forecast potential issues, enabling 

predictive maintenance activities that maintain optimal system efficiency and reliability. AI-enabled 
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proactive maintenance can save up to $30 000 per megawatt, thanks to decreased downtime and overall 

maintenance expenses (Kelko et al., 2022). Beyond predictive maintenance, AI-powered real-time 

monitoring and adaptive controls can reduce energy operation costs by optimizing the tilt angles of solar 

panels or the pitch of wind turbine blades to capture more renewable energy, and by storing excess energy 

during peak production for release during periods of low production. AI-powered optimization models also 

assist in integrating renewable energy production with stability, voltage control, and frequency 

requirements of the grid, offering long-term benefits for the durability and dependability of energy 

infrastructure. Overall, AI can lead to a cumulative performance improvement of up to 40% over the life of 

renewable energy production plants, with cost savings of up to $200 000 per megawatt installed (Kelko et 

al., 2022), depending on the specific renewable technology. 

Forecasting RE supply and demand is key to stabilizing and reducing the operational costs of RE 

transmission and distribution and improving source dispatching. Accurate predictions are crucial for market 

operators and energy traders to make informed decisions regarding energy pricing, scheduling, and market 

participation (Sweeney et al., 2020). AI allows excellent forecasting RE production and consumption across 

multiple geographical, dispersed sites, different time zones, under different probabilistic and hybrid 

scenarios (Sweeney et al., 2020; Ahmad et al., 2020). Large volume of weather data, historical generation 

trends, real-time and remote sensors can predict “ramp events”, that is sudden changes in RE production, 

to facilitate smooth integration of RE in energy networks (Nelson et al., 2020; Avtar et al., 2019). AI-

powered load models and real-time data analytics can predict future electricity consumption patterns, enable 

accurate load predictions and improve peak demand-side management outcomes at the grid level (Boza and 

Evgeniou, 2021; Stanelyte et al., 2022). 

AI, coupled with other technologies, can monitor RE flows in real-time, predict outages, and 

automatically balance bi-directional exchange of physical and information flows within various nodes of 

grids (consumption, distribution, production) and stabilise distribution grids (Ahmad et al., 2021; 

Abdulsalam et al., 2023). By analysing sensor data across the grid, AI optimises smoothing supply 

fluctuations, reducing grid imbalances, or voltage variations. AI-powered supervisory control and data 

acquisition systems, phasor measurement units, and other monitoring techniques allow real-time decision-

making and more efficient grid operations. AI help optimise sizing, placement, of energy storage to balance 

supply and demand, enhance grid stability, optimize load profiles, reduce peak demand (Jordehi, 2019; 

Tang and Wang, 2019; Hafeez et al., 2020). AI can improve the efficiency of controlling distributed energy 

sources, generators, flexible loads, and storage systems. AI is used for fault detection, predictive 

maintenance, and optimizing grid operations through real-time and predictive large datasets for economic 

dispatch, energy management, and optimal power flows (Abdulsalam et al., 2023; Hasan et al., 2023). Due 

to the diffusion of distributed energy resources (and prosumer models), AI is increasingly being looked at 

to improve grid resilience, integrate fluctuating renewable energy generation, and balance demand and 

supply real-time. AI is effectively applied to optimize overall costs of demand response strategies, energy 

consumptions, smoothing peaks during high demand or supply variability.  
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TABLE 3 

APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN THE PRODUCTION AND 

DISTRIBUTION OF RENEWABLE ENERGY SUPPLY CHAINS 

 

 
 

Theoretical Background: Dynamic Capabilities in Sustainable Supply Chains 

The dynamic capabilities theory explains how firms use capabilities to integrate, exploit, and 

reconfigure resources to maintain or create competitive advantages in evolving market conditions. Broadly, 

capabilities refer to competences or routines that enable firms to perform business tasks and activities in a 

way that supports their competitiveness. Teece (2007) categorizes capabilities into two types: foundational 

(or "static") capabilities, which may lead to short-term competitive advantages and economic performance 

improvements, and "dynamic" capabilities, which ensure long-term, sustainable firms’ competitiveness by 

reconfiguring existing operational practices (Teece and Linden, 2017; Vanpoucke et al., 2014). Dynamic 

capabilities are particularly important during market disruptions, technological diffusion, or intense 

competition, as they enable firms to respond effectively to such environments, fostering sustainable 

competitive advantage and superior economic performance (Teece et al., 1997). More generally, dynamic 

capabilities involve learnable routines and strategic activities that allow firms to adapt, innovate, and create 

new knowledge, products, or processes, thereby preserving a long-term competitive advantage. These 

capabilities are repeatable and ingrained, allowing firms to adjust structurally to changes in product 

offerings, processes, and market demand (Winter, 2003; Vanpoucke et al., 2014). 

According to Teece et al. (1997), dynamic capabilities involve three core activities: sensing (identifying 

market opportunities and threats by accessing new information), seizing (making strategic decisions based 

on identified opportunities while managing risks), and reconfiguring (reorganizing assets to enhance 

capabilities and promote organizational learning). Adaptive learning and reconfigurations are fundamental 

mechanisms for developing and evolving dynamic capabilities through repetition, correcting errors, 

empirical testing, and integrating new data into ordinary routines (Teece et al., 1997). Furthermore, sensing, 

seizing, and reconfiguring capabilities are sequentially linked and developed according to the dynamic 

capabilities’ theory. Artificial intelligence can provide firms with unique dynamic capabilities, and strong 
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AI-based dynamic capabilities can stimulate operational process redesign and alignment with external 

environments. 

Dynamic capabilities theory is increasingly applied in supply chain literature as it represents a flexible 

theoretical paradigm for understanding critical new phenomena especially in contexts of technological 

transitions (Teece et al., 1997). Discussions of dynamic capabilities in the context of AI are also becoming 

more common. In this research, we examine AI-based dynamic capabilities in renewable energy supply 

chains by analysing company cases, relying on Beske (2012) and Gruchmann and Seuring (2018) taxonomy 

of sustainable supply chain management dynamic capabilities. Beske (2012) and Gruchmann and Seuring 

(2018) identify specific types of sub-capabilities relevant to the three main dynamic capabilities identified 

by Teece et al. (1997). A summary of the dynamic capabilities used in the coding schemes to examine 

sensing, seizing, and reconfiguring capabilities in the selected cases is presented in Table 4 (see next 

section). 

 

TABLE 4 

DYNAMIC CAPABILITIES IN SUSTIANBLE SUPPLY CHAINS 

 

 
 

METHODOLOGY 

 

Our research adopts a multiple-case study approach appropriate for theory building (Voss, 2010). We 

theorise on AI applications in renewable energy supply chains to extend our understanding of how AI-based 

capabilities are developed in the selected cases drawing from dynamic capabilities theory and empirical 

evidence on AI applications. Our unit of analysis is implemented AI applications in the renewable energy 

supply chain. We compare the four case applications through dynamic capabilities lenses, identifying and 

comparing applications to obtain further elaborations of the AI-based renewable energy supply chains. 

In line with the research scope to examine AI applications, we select AI application cases from the 

population of existing AI-applications within the renewable energy sector from the Community Research 

and Development Information Service (CORDIS), a structured public repository of the European 

Commission’s Research and Innovation community platform. We sample four case applications in line with 

Eisenhardt’s (1989) suggestion of four to ten cases. All the cases belong to the European energy 

transmission and distribution industry since the matching renewable energy supply and demand takes place 

at grid level. EU governments and companies make large adaptations to accommodate the increasing share 
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of renewable energy sources in energy mix. Table 5 presents the sampled application-cases from CORDIS, 

and the relative data supports. 

We employ secondary data collection to improve the robustness and reliability of theory development 

and the source for case study research (Eisenhardt and Graebner, 2007). Prior studies have conducted case 

study research on secondary data sources collecting reliable and high reputation data. We collect multiple 

authoritative third-party sources to mitigate researcher bias, such as public reports and websites, scientific 

journal articles, professional newspapers (see Table 5 for details). The triangulation between various 

secondary data sources helps construct validity and improve reliability. The collected data of each case are 

saved in separate documents. Qualitative analysis clustering dynamic capabilities is based on theory. The 

data within each case is analysed deductively in the first stage, cross-case patterns are investigated through 

dynamic capabilities lenses in a second stage with a more inductive approach, following Eisenhardt’s 

(1989) suggestion of conducting a two-step analysis. The coding analysis employed coding rules that 

maintain an exploratory angle for new insights emergent from the data. The level of each renewable energy 

supply chain practice and AI dynamic capability is rated high, medium, or low, based on the intensity of 

codes. 

 

Within-Case Analysis 

Case 1 – OPENAI 

The project is coordinated by Amper S&C IOT SL and focused on expanding smart grid functionalities 

and energy efficiency services. XGBoost selection algorithms, discrete wavelet transform-based denoising 

schemes and SARIMAX statistical forecasting are used for the prediction of electricity consumption 

combining external sources such as weather data, sensor data, socio-economic data. This improved the 

demand forecasts based on real-world data improves the energy efficiency and demand management, and 

ultimately reduced energy waste. Blockchain is added to allow the development of decentralised markets 

promoting adoption of sustainable renewable energy used and reduction of energy costs. 

 

Case 2 – ADAPT 

The ADAPT project focuses on enhancing decision support for customers, RE generators and 

aggregators involved in negotiations within wholesale electricity markets and smart grids transactions. 

ADAPT proposes solutions to accommodate emerging players like RE generators since traditional 

wholesale and energy trading don’t adequately support new players and optimise their transactions. A multi-

agent decision support system composed of planning and negotiation components identifies lucrative RE 

opportunities in the market. A machine learning optimises actual energy transactions based on market 

volumes, prices, and competitors’ negotiation profiles. 

 

Case 3 – ADMS 

ADMS aims to address critical challenges faced by the optimization of ROI by Distribution System 

Operators in optimizing Return on Investment linked to grid instabilities generated by RES. By 

continuously monitoring supply chain dynamic, the project aims to use MAC’s low-cost supply chain 

monitoring and Gridhound's data-driven Advanced Distribution Automation system increase both grid 

capacity, reduce outage duration, and improve supply chain stability with TRL9 operational product 

standards. 

 

Case 4 – I-ENERGY 

The I-NERGY project developed an open modular framework, AI4 Energy, for AI-on-Demand in the 

energy sector, leveraging advanced technologies like AI, IoT, semantics, and data analytics. It facilitates 

cross-sector analytic tools for smart energy management, seamless data exchange while adhering to 

regulatory principles. The project evolved and scaled up AI-as-a-Service Energy Analytics Applications to 

optimize EPES value chains, especially for SMEs and non-tech industries. The project's objectives focus 

on reinforcing the AI-on-demand platform's service layer and expanding its usage through new user 

domains and experiments. 
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TABLE 5 

CASE CHARACTERISTICS, DESCRIPTION, AND SOURCES 

 

 
 

Cross-Case Analysis 

Sensing Capabilities 

Knowledge assessment covers the acquisition and evaluation of new or current information by the 

supply chain partners. In contrast, reflexive control refers to the dynamic assessment of supply chain 

functionality via monitoring routines of internal and external operations that support strategic decision-

making (Beske, 2012). Three cases selected (OPENAI, ADMS, I-ENERGY) show a significant potential 

of AI for acquiring real-time and multi-source data, in the forecasting and RE integration. ADMS utilizes 

smart machine-learning Network Management System NMS, such as micro–Phasor Measurement Units 

and LV/MV Network Monitor products, to sense the dynamic state of electricity supply chains (voltage, 

phase angles), enabling continuous situational awareness for DSOs and provide predictive analysis of grid 

behaviour. I-NERGY identifies AI-based analytics from several distributed intelligent collaborative nodes 

employing energy and non-energy related data from TSO, DSO and aggregators, off-the-grid domain data 

(simulated, open data, weather). Although not explicitly mentioned, ADAPT’s decision support system 

likely utilizes data from market prices, RE production forecasts, and opponent negotiation profiles, thus 

demonstrating sensing capabilities in acquiring crucial information for decision-making for players in 

electricity markets.  

 

Seizing Capabilities 

Partner development capabilities refer to empowering supply chain members (customers, upstream 

providers) to pursue shared sustainability goals via collaboration and knowledge evaluation, while co-

evolution capabilities foster supply chain partners’ performance via improved communication, trust, and 

relationships (Beske, 2012). Seizing is linked to optimizing market trading, upscaling, and RE diffusion 

with customers in the four cases. ADAPT's multi-agent DSS aids negotiation processes in grids and markets 

through ML, integrating AI to optimize negotiation outcomes. OPENAI exploits trading opportunities 

through optimization algorithms for decision-making in smart grids and energy markets. OPENAI 

empowers customers to distinguish RE in the market, reducing intermediation costs and increasing 

transparency to foster greater RE adoption. Through AI-based monitoring, ADMS increases grid capacity, 

reduces integration costs, and minimizes supply chain outages and customer losses. It integrates ANN into 

existing DSO grid management to predict supply chain behaviour, optimize operations, reduce emissions, 

facilitate adoption, and manage RE. 

Reconfiguration Capabilities 

Reconceptualization refers to the long-term, strategic transformation of supply chain-wide business 

models, thereby improving the focal firm competitive position (Beske, 2012). Distribution refers to the 
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integration of geographically distributed supply chain resources, which enables the design of new business 

models and implementation of additional sustainable practices. All four cases mention AI solutions for 

enhancing grid capacity, managing reverse flows, and enabling the participation of new small-scale players. 

I-NERGY offers AI analytics and an interconnection layer, ML models, and AI energy analytics 

applications to optimize AI on-demand service, boost the deployment of AI-based solutions and services, 

and enable a larger user community to reap economic benefits. Through developing a decentralized, 

transparent energy trading marketplace, OPENAI aims to reconfigure traditional energy market 

infrastructures, optimizing operating costs and energy prices. ADAPT aims to reconfigure traditional 

market models by enabling the participation of emerging players, such as RE generators and small-sized 

consumers, in wholesale electricity markets through AI-driven decision support solutions, addressing the 

divergent evolution of smart grids and electricity markets. 

 

TABLE 6 

IDENTIFIED DYNAMIC CAPABILITIES AND RELATED ROUTINES 

 

 
 

DISCUSSION 

 

Overall, our research results highlight AI's potential to address renewable energy supply chain 

dimensions of forecasting, low-cost production, and collaboration (Gawusu et al., 2021). Surprisingly, AI 

possesses less applicability in innovation and sustainability, perhaps due to the still limited diffusion of 

prosumer models. We summarize our cross-case findings and propose propositions for future empirical and 

theoretical advancements. 

Forecasting and low-cost production are the two major categories identified in this research. The 

potential to improve predictability stems from how AI collects, processes, and predicts future changes based 

on real-time data (Pournader et al., 2021). All analyzed cases demonstrate that predictability has reached a 

significant level of maturity, both on the supply and demand sides, consistent with the literature (Zhang et 

al., 2022). AI enables the reduction of operational costs, energy trade costs, and optimization of scheduling 

and planning, somewhat contrasting with the main internal cost benefits highlighted in the literature (Liu et 

al., 2022). ADMS supply chain sensors and analytics help reduce grid inertia, improving supply chain 

stability and predictability, while reducing customer losses and outages. OPENAI reduces operating costs 

and energy prices by eliminating transaction costs and intermediaries through AI and blockchain. Hence, 

our first proposition is: 
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Proposition #1: AI-enabled information processing improves predictability of renewable energy demand 

and supply and reduces renewable energy distribution costs. 

 

Closely linked with predictability is the critical aspect of RE integration. Consistent with prior research, 

our findings demonstrate the important role of information technology in enhancing supplier integration. 

ADMS facilitates improvements in supply chain flow stability and predictability, bolstering capacity 

demand measurement and enhancing RE energy quality. This advancement enables greater integration of 

RE sources into the grid, thereby augmenting grid capacity for RE integration. Furthermore, ADAPT plays 

a pivotal role in enabling the participation of emerging players, such as RE generators and small-scale 

consumers, in wholesale electricity markets through AI-driven decision-support solutions. This strategic 

approach addresses the evolving landscape of smart grids and electricity markets. Consequently, our second 

proposition is: 

 

Proposition #2: Forecasting improves integration of renewable energy production and facilitates sensing 

capabilities. 

 

Data sharing drives supply chain collaboration, a prevalent theme across most cases, notably 

highlighted in OPENAI. These findings align with literature on AI and sustainable operations (Gawusu et 

al., 2021). AI, along with complementary technologies, effectively addresses reliability and scalability—

key factors for collaboration—as evidenced in cases like OPENAI and I-NERGY. Furthermore, AI enables 

renewable energy differentiation within supply chains, facilitates sharing of advanced solutions with 

customers, and supports the co-development of technological paradigms. Literature emphasizes AI’s role 

in managing renewable energy-related information to foster collaboration (Zhang et al., 2021; Jha et al., 

2022). I-NERGY, for instance, provides AI analytics and an interconnection layer that optimizes on-

demand AI platform services for TSOs, DSOs, and aggregators, thereby amplifying the deployment of AI-

based solutions across renewable energy supply chains. Collaboration in these cases yields new services 

and streamlines operations among partners for enhanced efficiency. Hence, our third proposition is: 

 

Proposition #3: Low-cost production and distribution improve renewable energy supply chain 

collaboration and improve seizing capabilities. 

 

Based on the findings, distributed renewable energy supply chains emerge as a prominent domain for 

AI application. Encouraging suppliers and partners to adopt renewable energy through AI plays a pivotal 

role in this context. AI’s role in facilitating renewable energy participation, particularly in terms of reverse 

flow management and prosumers, has been emphasized (Liu et al., 2021). This study corroborates the 

increasing presence of prosumers and highlights the importance of incentivizing users and corporate 

partners to participate in AI-driven renewable energy supply chain initiatives. Advanced Distribution 

Management Systems (ADMS), by significantly enhancing renewable energy integration and predictability, 

have notably improved supply chain electricity quality as the share of renewable energy connections grows. 

The utilization of AI and blockchain by OPENAI has further enabled active participation, establishing a 

discernible distributed supply chain of prosumers engaged in renewable energy exchange. Additionally, 

this study demonstrates AI’s effectiveness in streamlining core processes of reverse flow management, 

including phase synchronization. Addressing the geographical dispersion of supply chain partners remains 

an important consideration for future research. Currently, only ADMS explicitly addresses the regulatory 

compliance requirements for Distribution System Operators (DSOs) during the net-zero transition. The lack 

of strong links between AI and innovation in other cases suggests a need for further exploration. Therefore, 

our fourth proposition is: 

 

Proposition #4: Low-cost production and distribution enhance distributed RE supply chains and improve 

reconfiguration capabilities. 
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Building on these propositions, we propose the theoretical framework shown in Figure 2. 

 

FIGURE 2 

THEORICAL FRAMEWORK OF AI-BASED DYNAMIC CAPABILITIES FOR RENEWABLE 

ENERGY SUPPLY CHAINS 

 

 
 

Implications for Theory 

This research offers important theoretical contributions to the dynamic capability theory and the 

emerging field of renewable energy supply chains management. We identify the dynamic capabilities 

derived from AI applications that facilitate the pursuit of competitive advantages based on renewable 

energy sources. We elaborate further on these theoretical contributions below. 

First, a recurrent criticism of dynamic capability theory is its lack of transferable managerial 

applications from a theoretical perspective (Schilke et al., 2018). However, our study highlights significant 

practical applications of dynamic capability theory, demonstrating how the energy sector can develop 

capabilities through AI to achieve operational improvements from otherwise unpredictable, unstable, and 

complex renewable energy sources (such as wind and solar). Our research identifies the most important 

dynamic capabilities and sub-capabilities that can guide energy companies as they navigate the challenges 

of net-zero and digital transitions. Therefore, this study offers practical managerial insights that strengthen 

the applicability of dynamic capability theory in the renewable energy sector. 

Second, AI research is predominantly driven by engineering and computer science (Zhang et al., 2022; 

Liu et al., 2021), with limited focus on supply chain management (Pournader et al., 2021; Hendriksen, 

2023). Highlighting the need for theories to offer context-specific conceptualizations, our research provides 

theory-driven contributions applicable to the renewable energy supply chains empirical setting (Craighead 

et al., 2016). We demonstrate how AI enables energy firms to enhance their operational performance by 

equipping them with dynamic capabilities to sense, seize, and reconfigure opportunities presented by 

renewable energy sources. This research advances the conceptualization of dynamic capabilities within the 

renewable energy supply chain context. It empirically supports the adaptability of dynamic capability 

theory for examining AI applications in supply chains (Pournader et al., 2021). Therefore, our study shows 

that dynamic capabilities can be conceptualized, transferred, and examined even in new, complex 

technological environments, such as those created by the increasing adoption of intermittent renewable 

energy sources and artificial intelligence in the energy sector. 

Third, there is ongoing debate in the literature regarding how firms develop capabilities for competitive 

advantage. While some scholars suggest that capabilities are developed sequentially and hierarchically (i.e., 

higher-order capabilities cannot be developed before lower-order ones), others propose that capabilities are 

developed and exploited simultaneously in non-linear patterns. Dynamic capabilities are typically thought 

to follow a hierarchical and sequential process of sensing, seizing, and reconfiguration (Khan et al., 2021). 
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Our study does find evidence of clustering of dynamic capabilities at the lower levels, that is at sensing and 

seizing (see Table 6). Still, we also find evidence that AI-based dynamic capabilities (and related 

technologies) can also work synergistically and complementarily, allowing simultaneous exploitations of 

opportunities rather than being sequential and hierarchical in their development and exploitation. This is 

shown by the fact that sensing and reconfiguring capabilities manifest and develop jointly, affecting one 

another in our research. While we recognize that this "jump" of seizing capabilities could be linked to the 

specific characteristics of energy production and the energy market, we do not find sufficient support to 

claim that dynamic capabilities do not follow linear, hierarchical developmental pathways. Greater 

evidence to generalize these simultaneous sensing-reconfiguring capabilities is necessary beyond the 

renewable energy sector. A case-by-case (or industry-specific, ad-hoc) approach may be necessary to 

advance dynamic capability development theory and to untangle these complex patterns. 

Finally, we find that AI can significantly enhance reconfiguring capabilities, enabling the case 

applications to introduce new products, services, and production processes, and to reach previously 

untapped market segments. Our research expands our understanding of the inter- and intra-firm factors that 

influence the development of dynamic capabilities. Developing a distributed marketplace of small-scale 

renewable energy consumers and producers (reconfiguration-distributed marketplace) strongly depends on 

renewable energy learning and predictability (sensing-supply and demand forecasting), both of which can 

be enhanced via AI. This study reveals a distinct association: renewable energy supply chains in distributed 

energy markets depend on learning and forecasting, both of which derive from the simultaneous 

exploitation of multiple technologies, including blockchain and the Internet of Things. Companies adopting 

AI must prioritize aspects of renewable energy demand and supply forecasting, leveraging real-time and 

prospective data on renewable energy production at the supply chain level. To this end, developing an 

infrastructure of real-time sensors and off-grid data sources is imperative for enhancing grid capacity 

management ahead of actual renewable energy production, addressing the supply chain's demand and 

supply sides (Liu et al., 2021). In summary, our research shows that AI applications in the renewable energy 

supply chain depend on several contingencies that are specific to this context. 

 

Implications For Practice 

While many energy firms invest in uncoordinated and sometimes piecemeal AI initiatives as part of 

renewable energy-centred business models, few are aware of how to develop the AI-based dynamic 

capabilities needed to manage renewable energy sources effectively. Embracing more sustainable and more 

digital business models simultaneously presents several technological, competitive, and environmental 

challenges. This research offers a model for managers aiming to achieve the dual goals of decoupling from 

fossil fuels and scaling up disruptive technologies like AI. We provide key insights for renewable energy 

practitioners with implications for developing AI-based dynamic capabilities in renewable energy supply 

chains. The cases presented in this research serve as a guide for AI rollout phases. 

First, AI applications can significantly optimize costs across renewable energy supply chains, 

encompassing production, distribution, consumption, and trading. Improved predictability and learning in 

renewable energy production through AI can reduce grid balancing costs by enabling better scheduling and 

planning (Zhang et al., 2022). Enhanced efficiency also lowers renewable energy integration costs, creating 

opportunities for benefits-sharing among supply chain partners (Hannan et al., 2021). However, AI adoption 

remains costly due to legacy system constraints, implementation challenges, and transition expenses 

(Gawusu et al., 2021). Advanced Distribution Management Systems (ADMS) and similar tools illustrate 

AI’s potential to reduce renewable energy-related costs, though post-implementation expenses require 

further examination and scrutiny. Projects like I-NERGY suggest that maximum benefits may be realized 

when AI is integrated with technologies such as IoT and blockchain. While ADMS may provide cost-

effective monitoring, large-scale deployment can raise costs related to computational power, data storage, 

and processing (Ahamad et al., 2021). Managers should prepare for potential cost escalations associated 

with AI-driven renewable energy supply chains, prioritizing improvements in computational efficiency and 

data management. Given AI's complexity, firms with low digital maturity should work to enhance their 

digital capabilities before AI implementation (Hendricksen, 2023), although renewable energy integration 
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may occur earlier. With limited empirical evidence available, companies must carefully assess AI’s 

potential impact on renewable energy supply chains. 

From a renewable energy perspective, we demonstrate that firms can develop AI-based dynamic 

capabilities by first prioritizing sensing—arguably the most critical capability—before advancing to the 

more complex capabilities of seizing and reconfiguring. A capability-building approach that emphasizes 

sensing capabilities as a foundation for implementing renewable energy supply chains, before progressing 

to seizing and reconfiguring, may thus be more effective. Sensing sub-capabilities, such as renewable 

energy demand and supply forecasting and supply chain network integration, are essential for managing 

fluctuations among renewable energy producers. Without these, it would be technically impossible to 

synchronize the flows of renewable energy within the distribution and transmission network. In all case 

applications, sensing is achieved through establishing a network of sensors that integrate various sources 

of real-time information (e.g., season, socio-demographics, solar irradiance, wind strengths). 

This research highlights the importance of AI-based dynamic capabilities for fostering collaboration 

and upgrading partnerships within renewable energy supply chains, both at the production and consumption 

stages. Our findings suggest that managers should engage in technological and developmental partnerships 

with renewable energy producers and consumers to facilitate effective distribution and transmission of 

renewable energy across the grid. Information flows at both consumption and production points help reduce 

uncertainty, while introducing new renewable energy technologies—such as batteries, transformers, and 

distributed sensors—lowers competitive barriers and enables bi-directional flows between consumers and 

producers. Collaboration can thus serve as a foundation for advancing distributed marketplaces. 

 

CONCLUSIONS, FUTURE RESEARCH, AND LIMITATIONS 

 

This study demonstrates that AI is a valid tool for enhancing the integration of renewable energy in 

energy supply chains, as there are unsuccessful cases of firms applying artificial intelligence to renewable 

energy supply chains without AI-driven dynamic capabilities. The main goal of this research is to develop 

a conceptual framework of AI-driven dynamic capabilities to design a renewable energy supply chain in 

the context of increasing diffusion of renewable energy. We find that sensing dynamic capabilities are the 

most relevant enablers of renewable energy supply chains. Yet, while AI-based dynamic capabilities of 

sensing, seizing, and reconfiguring are essential to developing a renewable energy supply chain, they do 

not necessarily appear to build sequentially but broadly sustain and complement one another 

simultaneously. Consequently, energy companies will benefit from developing AI-based dynamic 

capabilities beyond sensing to integrate renewable energy in their business models. Priority should be given 

to the most salient dynamic capabilities we identify in this study, without ignoring the less salient ones, 

since we find evidence of non-linear rather than sequential development of AI-based dynamic capabilities. 

Finally, agility and adaptability in developing AI-based dynamic capabilities are important, as these can 

overlap to a considerable extent. 

This research has limitations, which we outline in four key areas below. First, the study lacks evidence 

of AI failures, focusing primarily on successful implementations or pilot cases. Although scholars note that 

AI implementation can be complex, there is limited information on the challenges of adopting AI for 

managing renewable energy. Further research is needed to investigate the operational and technical 

difficulties of integrating AI into existing electricity production and consumption processes. Second, the 

study is limited in sample size to four case applications of AI, presenting an opportunity for future research 

to conduct a more in-depth examination, including stakeholders from production, consumption, and 

distribution in renewable energy supply chains. Third, our study identifies the main AI-based dynamic 

capabilities for renewable energy integration and the relevant sub-capabilities for each. We recognize that 

our list may not be exhaustive and that other AI-related factors may have been overlooked. Lastly, the study 

highlights the frequent combined use of AI, IoT, and blockchain technologies. Future research should 

explore the integration of IoT and, more critically, blockchain technology to better understand the drivers 

and overcome barriers in renewable energy supply chains. Our study is conducted among AI applications 

in the renewable energy sector within the European Union. The findings might differ in countries with 
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greater or lesser AI maturity than the EU. Future research could validate our findings through case studies 

in other countries and gather further evidence on the overlaps among dynamic capabilities. 
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