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Home energy optimization is increasing in research interest as smart technologies in appliances and
other home devices are increasing in popularity, particularly as manufacturers move to produce
appliances and devices which work in conjunction with the Internet. Home energy optimization has the
potential to reduce energy consumption through “smart energy management” of appliances. Information
and communications technologies (ICTs) help achieve energy savings with the goal of reducing
greenhouse gas emissions and attaining effective environmental protection in several contexts including
electricity generation and distribution. This “smart energy management” is utilized at the residential
customer level through “smart homes.” This paper compares two artificial neural networks (ANN) used
to support home energy management (HEM) systems based on Bluetooth low energy, called BIluHEMS.
The purpose of the algorithms is to optimize energy use in a typical residential home. The first ANN uses
the Levenberg-Marquardt algorithm and the second uses the Levenberg-Marquardt algorithm enhanced
by a second order correction known as geodesic acceleration.

INTRODUCTION

Home energy optimization in increasing in research interest as smart technologies in appliances and
other home devices are replacing traditional items, particularly as manufacturers move to produce
appliances and devices that work in conjunction with the Internet. Home energy optimization has the
potential to reduce the use of energy through “smart energy management” of appliances. Information and
communications technologies (ICTs) help achieve energy savings with the goal of reducing greenhouse
gas emissions and attaining effective environmental protection in several contexts including electricity
generation and distribution. This “smart energy management” is utilized at the residential customer level
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through the larger concept, “smart homes.” Smart home energy management has led researchers such as
Chen et al (2013), Han et al (2014), and Collota et al (2017) to focus on “smart homes” as critical partners
in reducing energy consumption and thereby reducing greenhouse emissions and achieving large-scale
energy savings. As explained by Collota et al (2017), “intelligent metering management systems and
incentives such as demand response programs, time-of-use, and real-time pricing, are applied by utilities
to encourage customers to reduce their load during peak load hours.”

A smart home is a home equipped with devices such as the currently available lighting, heating,
appliances, and electronic devices that can be controlled remotely by phone or computer. Use of these
technologies can reduce energy consumption by providing consumption profiles of appliances to the
consumers and suggesting changes in behavior. A common example is using the washing machine or
dishwasher during off-peak times rather than during peak power consumption periods. These appliances
can be controlled by a user who is alerted to off-peak periods by the utility company; the user can
remotely turn on the appliances using a remote device such as a mobile phone. Similarly, if a consumer
leaves a lamp or other device on, they can be alerted to the use of energy at peak-pricing periods; so they
can make the choice to turn off these devices to save on energy consumption.

With the goal of improving the efficiency of power consumption, artificial intelligence (Al) can play
an important role. Artificial intelligence can be used to make decisions on behalf of the user to manage
home devices, e.g., turn off and on devices during peak and off-peak periods respectively. With this in
mind, there is a need to make communication and information systems that can be used to increase the
efficiency and effectiveness of automated home management.

Home Area Networks (HAN) utilize a communication path among smart meters, home appliances
and devices (Hiew et al 2014). The HAN enables consumers to collect information about their power
consumption behavior and the electricity consumption costs via in-home display devices. This is a vast
improvement over the traditional (labor-intensive and periodic) electric energy metering system, whose
precision is not accurate nor timely enough to provide any practical energy cost savings to the customer.

LITERATURE REVIEW

Agarwal et al. (2010) determined that most building electrical systems run on a set schedule without
consideration of occupancy status or user needs. Addressing this concern, the authors deployed sensor
technology to measure occupancy status. In order to interact with sensors, an occupancy detection was
developed along with a wireless network and occupancy server. They deployed their system in ten offices
over a two-week interval for data collection purposes. Using the data collected in the aforementioned
step, the authors performed a simulation, which indicates that they are able to produce a 10%-15%
savings with variations explained by daily outdoor temperature fluctuations.

Wireless Networks (WNs) have been widely recognized as a technology promising to improve
several aspects of smart energy technologies (Collotta et al, 2015; Wang and Granelli, 2014), especially
those that deal with power generation, bidirectional delivery, utilization and seamless monitoring,
providing an energy efficient, reliable and low-cost solution for control management (Collota et al 2017;
Feng et al, 2015).

Machine to machine (M2M) communication has shown great promise in a wide variety of domains.
Niyato, Xiao, and Wang (2011) applied the M2M approach to the smart grid and revealed that M2M is
typically embedded in electronic devices. They further explained that M2M enables connectivity,
functions as middleware, provides M2M component connectivity, and the communication network
facilitates M2M communication between gateways and M2M servers. To demonstrate their methods,
authors looked at a scenario within 1 sq. km. and 250 nodes served by a WAN base station. Finally, they
recommend open research possibilities and suggest that the cost of HEMS can be minimized with an
M2M approach.

Erol-Kantarci and Mouftah (2011) evaluated an in-home energy management system (iHEM). iHEM
was compared with optimization-based residential energy management (OREM). The authors
demonstrated that iHEM has the potential to lower costs when peak pricing is employed. OREM had a
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total lower cost and was deemed more flexible, permitting communication with devices and sensors.
When employed in this scenario, it was successful in reducing the cost to consumers.

Hu and Li (2013) proposed SHEMS, or smart home energy management systems, where machine
learning was integrated with sensing and communication technologies for all aspects of home energy
management. A naive Bayes classifier and hidden Markov models were applied to predict human activity,
and thereby energy consumption, via data collected from sensors. Results were validated via simulation
and demonstrate how the design can be adapted to many scenarios. Additional models were introduced by
Han et al (2014) and Chen et al (2013). In their models, the SHEM relied on matching present generation
values with demand by controlling the energy consumption of appliances and optimizing their operation
at the user side.

Asare-Bediako, Ribeiro, and Kling (2012) researched the optimization of smart home energy systems
(SHEMS). The authors sought to analyze how the implementation of SHEMS could be used to improve
the efficiency of energy consumption. Home energy consumption provides many challenges that need to
be addressed. The study used a MATLAB simulation to look at the various aspects of SHEMS. Key
findings included the importance of electricity consumption and the need for an energy-aware system. A
solution such as a SHEMS cost-optimization for demand peaks and valleys is critical. Conservatism, cost,
and privacy will be key barriers to the future adoption of smart home energy systems.

Pipattanasomporn, Kuzlu, and Rahman (2012) studied a HEM algorithm for managing high
consumption households. Their algorithm is important in demand response within households. The
authors performed a simulation on a 2500 sq. ft. home and ranked the importance of various systems such
as water temperature and HVAC levels. Results indicate the algorithm can keep a home’s power
consumption below the demand limit; however, home occupants may need to sacrifice comforts in order
to achieve peak efficiency.

Zhao, Lee, Shin, and Song (2013) investigated efficient scheduling methods for home power usage
and consumption in the smart grid. Their objective was to deploy energy management systems in the
home to reduce demand at peak times. The authors based their approach on receiving a demand signal
from the electricity provider to detail peak usage times. An optimization-based approach complete with a
genetic algorithm and tested via a simulation was developed. Results of the simulation on a combination
RTP and IBR pricing model demonstrated that when applied in this scenario results are favorable for both
energy providers and consumers.

Ozturk, Senthilkumar, Kumar, and Lee (2013) developed a system to expand demand response via
automated scheduling of appliance operations. Demand response and time of use based pricing scenarios
seek to inform and control consumer demand for power during peak periods. Furthering this method, they
develop a decision support system which is used to forecast occupant demand based on an adaptive neural
fuzzy instance system (ANFIS). Implementing the ANFIS on a self-organizing home energy network,
results indicated that ANFIS is a suitable mechanism to learn user behaviors and develop models to buffer
electricity demand through automated appliance scheduling.

Similarly, home energy management systems (HEMS) are designed to lower the cost of energy for
consumers. One issue is the effects of HEMS with HVAC systems. To address this, Jo, Kim, and Joo
(2013) propose a smart home heating and air conditioning management system via optimal scheduling
management. This model takes into account customer convenience with available low-cost energy
resources. The model has the potential to lower consumer costs via optimization scheduling and could be
employed in a wide range of scenarios.

Anvari-Moghaddam, Monsef, and Rahimi-Kian (2015) developed a linear programming model to
balance comfort and efficiency in smart home management. Oftentimes, there are conflicting objectives,
such as comfort and efficiency that need to be considered from an optimization point of view. To address
this concern, a multi-objective mixed integer non-linear programming method was developed. To
compare this approach with other methods, multiple simulations using real-world data were employed.
Results showed that balancing system and user constraints could be addressed with the potential to reduce
energy usage while maintaining user comfort.
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D.-M. Han and Lim (2010a, 2010b) and J. Han, Choi, Park, Lee, and Kim (2014) investigated ZigBee
and PLC to consider both load management and demand response. First, the research examined standard
practices for demand and load management. Next, ZigBee was deployed with sensor networks, which
divided tasks into appropriate components complete with a new routing protocol dis-joint multi-path
based routing (DMPR). The DMPR improved the performance of ZigBee networks through more
efficient routing. Next, a system was proposed using PLCs and a home server to gather and analyze
information from the network to aid in making intelligent decisions to control home energy usage based
on statistical analysis. In all instances, ZigBee combined with sensor technology was shown to improve
Smart Home Energy Networks.

SYSTEM MODEL

We present the smart home energy model proposed by Collota et al (2017) in Figure 1 to illustrate
how a SHEM system would work.

FIGURE 1
ARCHITECTURE OF THE PROPOSED ENERGY MANAGEMENT SYSTEM
REPRINTED FROM COLLOTA ET AL (2017)
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The main elements of the system are BIUHEMS - a home energy management (HEM) system based
on Bluetooth low energy - for monitoring and controlling the electrical appliances, planning a convenient
start time for them, an FLC to manage both the scheduling of home appliances and the feedback of
consumers, and an ANN, for forecasting of energy requirements. Collota et al (2017) proposed an ANN
to overcome the main limitations of the lack of an automated system capable to make choices based on
both the actual energy consumption values and of predicted ones’ limitation. The system proposed by
Collota et al (2017) involves communications among smart appliances and BIWUHEMS through a wireless
network. BIUHEMS, assisted by the FLC, allows the switching on of the appliance or suggests to the
consumer which is the more appropriate start time, taking into account both the available stored energy in
the storage system and the updated prices in that time slot. The consumer can decide whether to accept
the schedule proposed by BIUHEMS. Several parameters, such as the day of the week, the hour of the day
and the home load, are taken into account in order to train an ANN model aiming at forecasting the
energy requirements. The output of the ANN is used to feed BIWHEMS, and the FLC, with the goal of
reducing home electricity consumption charges, decreasing the electricity bill of the consumer by shifting
the appliances’ operation from peak demand hours to off-peak ones.

ANN USING GEODESIC ACCELERATION TO IMPROVE THE PERFORMANCE OF THE
LEVMAR ALGORITHM

It has been shown numerically that the performance of the Levenberg-Marquardt algorithm can be
improved by including a second order correction known as the geodesic acceleration. The Levenberg-
Marquardt algorithm is a technique for solving nonlinear least squares problems. Least squares problems
arise in the context of fitting a parameterized function to a set of measured data points by minimizing the
sum of the squares of the errors between the data points and the function. Nonlinear least squares methods
iteratively reduce the sum of the squares of the errors between the function and the measured data points
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through a sequence of updates to parameter values. The Levenberg-Marquardt curve-fitting method is a
combination of two minimization methods: the gradient descent method and the Gauss-Newton method.

In the gradient descent method, the sum of the squared errors is reduced by updating the parameters
in the steepest descent direction. The gradient descent method converges well for problems with simple
objective functions. For problems with thousands of parameters, gradient descent methods are sometimes
the only viable choice. The gradient of the chi-squared objective function with respect to the parameters
is:

v 2 v(p)) W Ul v(p))
9.2 _ oty_o 1 0 (o ofo))
()p\ y—yip dp y—YiP) (1)
OV )
2y —$(p)TW [ﬂ} 2)
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where the m x n Jacobian matrix [09/0p] represents the local sensitivity of the function ¥ to variation in
the parameters p. For notational simplicity, the variable J will be used for [0y/0p]. The parameter update
h that moves the parameters in the direction of steepest descent is given by hyq = aJTW(y — §) where
the positive scalar determines the length of the step in the steepest-descent direction.

In the Gauss-Newton method, the sum of the squared errors is reduced by assuming the least-squares
function is locally quadratic and finding the minimum of the quadratic. It presumes that the objective
function is approximately quadratic in the parameters near the optimal solution. For moderately-sized
problems, the Gauss-Newton method typically converges much faster than gradient-descent methods. The
function evaluated with perturbed model parameters may be locally approximated through a first-order
Taylor series expansion.

The Levenberg-Marquardt method acts more like a gradient-descent method when the parameters are
far from their optimal value, and, acts more like the Gauss-Newton method when the parameters are close
to their optimal value. (Levenberg, 1944; Lourakis, 2005). Many variations of the Levenberg-Marquardt
have been published in papers and in code such as Grammes (n.d.), Lourakis (2005), Press, et al (1992),
Gavin (2017), and Shrager et al, (2006).

Geodesic refers to the shortest possible line between two points on a sphere or other curved
surface. Unlike other methods which include second derivative information, the geodesic acceleration
does not attempt to improve the Gauss-Newton approximation to the Hessian matrix, but rather is an
extension of the small-residual approximation to cubic order. In deriving geodesic acceleration, the small-
residual approximation is complemented by a small-curvature approximation. This latter approximation
provides a much broader justification for the Gauss-Newton approximation to the Hessian and
Levenberg-Marquardt algorithm. In particular, it is justifiable even if the best-fit residuals are large, is
dependent only on the model and not on the data being fit, and, is applicable for the entire course of the
algorithm and not just the region near the minimum. (Transtrum & Sethna, 2012).

PERFORMANCE EVALUATION

To assess the performance of the proposed model, a simulation using the Network Simulator Version-
3 (GNS3). The simulation followed the approach proposed by Collota et al (2017) and evaluated in terms
of HEM performance and the network performance in a typical home automation scenario, as depicted in
Figure 2.
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FIGURE 2
SAMPLE WIRELESS HAN ARCHITECTURE BASED ON BLE REPRINTED FROM
COLLOTA
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The evaluation scenario of the simulations was performed making a comparison between the
BIuHEMSANN model and the BIWHEMSANN-E model. The only difference between the models is the
addition of geodesic acceleration to the LevMar algorithm to train the neural network. The authors
retained the approach of including the consumers’ feedback. The simulation scenario like Collota et al
(2017) contained several loads represented by a washer, a dryer, a dishwasher, and a dehumidifier which
are appliances the network can run while the user is away from home. The duration (minutes) and the
energy consumption (kWh) of these appliances are vendor specific but we used reference values for
average load per cycle given. An extra load was included with an electricity consumption varying
between 0 kWh and 5 kWh randomly. Regarding the load, 80% of it was considered miscellaneous while
the remaining 20% was related to standby appliances. The peak hours fall from 8 AM to 2 PM, the
switching on of an appliance has been considered as a Poisson distribution and the requests generated
randomly. Regarding the configuration parameters, the threshold value of power has been set to 1 kWh,
the threshold value of delay has been set to 24 hours; simulations duration has been between 5 days and
365 days (1 year) and the first 5 days are spared for warm up. The electricity consumption pattern

measured in a generic single day is depicted in Figure 3 with hours on the x-axis and consumption on the
y-axis.

N

FIGURE 3
ELECTRICITY ENERGY CONSUMPTION COMPARISON
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The percentage of load in peak hours is a ratio between the amount of load in peak hours to the total
load. The high value of this ratio results in high electricity charges due to pricing tariffs.
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FIGURE 4
LOAD OF THE APPLIANCES RATIO DURING PEAK HOURS
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Figure 4 shows the contribution of the appliances on the average peak load is shown. Consistent with
the results from Collota et al (2017), both the BlueHEMS-ANN and the BlueHEMSANN-E have almost
0.1 of the load generated by the appliances takes place during peak periods although the enhanced system
performed better as the number of days increased.

The results obtained by the simulations are shown in Tables 1 and 2. These simulations have been
performed to obtain the configuration of the ANN that achieves the best performance. The inputs of the
neural network are given by the sum of the embedding dimensions. A higher number of inputs leads to a
significant accumulation of data in memory and could have reduced capacity in terms of memory. The
reduction in the number of inputs also improves memory management. For consistency with Collota et al
(2017), the training parameters used in the simulations are the following:

«  Performance goal: 7x107;

* Learning rate: 0.4;

¢ Maximum failure number for validation: 30;

* Marquardt adjustment parameter: 0.07.

TABLE 1
PERFORMANCE OF ANN WITH LEVMAR ALGORITHM (BLUEHEMS-ANN)

Neurons in
Hidden Training
Layer Cycles MSE RMSE MAE MAPE
10 123 8.75E-03 8.50E-03 6.77E-02 5.75E-04
20 132 8.18E-03 2.35E-02 2.10E-03 4.27E-02
30 105 9.43E-03 3.87E-03 6.33E-04 5.54E-03
40 162 2.46E-04 3.02E-04 1.76E-05 3.64E-04
50 204 9.74E-03 2.19E-03 1.97E-04 9.31E-04
60 218 3.70E-03 1.76E-03 5.32E-04 7.86E-03
70 154 5.19E-04 1.93E-03 5.37E-02 6.26E-03
80 129 6.76E-03 4.34E-04 1.92E-04 4.41E-04
90 195 8.53E-04 5.27E-03 6.84E-02 1.26E-02
100 158 2.91E-02 4.16E-04 7.83E-03 2.38E-02
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TABLE 2
PERFORMANCE OF ANN WITH LEVMAR ALGORITHM ENHANCED WITH
GEODESIC ACCELERATION (BLUEHEMSANN-E)

Neurons in
Hidden Training
Layer Cycles MSE RMSE MAE MAPE
10 124 6.86E-02 7.51E-05 4.64E-05 3.31E-02
20 137 5.63E-02 8.27E-03 7.70E-02 4.79E-03
30 102 3.59E-03 5.10E-02 6.10E-04 9.67E-02
40 127 1.14E-04 9.43E-06 1.68E-05 4.09E-05
50 289 5.90E-04 8.90E-03 1.83E-03 5.88E-02
60 260 2.05E-04 4.14E-02 1.38E-03 1.01E-04
70 188 3.22E-02 8.11E-02 1.91E-02 3.59E-03
80 139 7.04E-03 3.11E-04 6.20E-04 4.88E-02
90 271 6.16E-03 2.36E-03 6.67E-03 2.26E-04
100 140 9.70E-03 9.94E-02 9.76E-04 3.09E-05

Both algorithms performed best at 40 nodes as indicated by the lowest performance indicators. A t-
test comparing the means of the Electricity Energy Consumption and Load of the appliances ratio during
peak hours showed a significant difference in the energy consumption at a p-value of .005 which indicates
the enhanced algorithm did improve the performance of the LevMar algorithm. However, a t-test of the
load ratio had a p-value of .07 which indicates there was not a significant difference between the two
algorithms.

CONCLUSION AND NEXT STEPS

In this work, an Artificial Neural Network (ANN) enhanced with geodesic acceleration for BlIuUHEMS
was shown to potentially improve the problem of peak load management using the available data obtained
by the Home Energy Management (HEM) system. The proposed mechanism provides the possibility to
improve forecasting the energy consumption conditions and the home energy requirements at different
times of the day or on different days of the week. Future research actions may simulate energy
management without input from the consumer and with a more modern use of appliances and wireless
technologies such as recording streaming videos for later consumption, home temperature regulation, and
lighting.
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