A Systematic Review of Data Visualization
DOI:
https://doi.org/10.33423/jsis.v19i3.7375Keywords:
innovation, sustainability, data visualization, Gestalt Principles, chartsAbstract
Data visualization involves presenting data in graphical or pictorial form that in turn helps with decision support. This study addresses the importance of data visualizations in today’s data world, and its role in effective communication in various industry sectors. This study applied the PRISMA methodology to conduct the literature review. Four major themes are identified in this paper: data visualization principles, methods, contemporary chart types, and data visualization challenges. Popularly applied data visualization principles such as Gestalt Principles that help make data visualizations more effective are examined. Advanced chart types include doughnut chart, chord diagram, sankey diagram, and violin plot. Some challenges associated with data visualizations are data accuracy, complexity and uncertainty. Given the challenges, visualizations still benefit any field of study that requires interpreting and presenting complex information.
References
Ajibade, S., & Adediran, A. (2016). An overview of big data visualization techniques in data mining. International Journal of Computer Science and Information Technology Research, 4(3), (105–113).
Begum, F. (2016). Mapping disease: John Snow and Cholera. Royal College of Surgeons of England Library and Publications. Retrieved from https://www.rcseng.ac.uk/library-and-publications/library/blog/mapping-disease-john-snow-and-cholera/
Bonneau, G.P., Hege, H.C., Johnson, C.R., Oliveira, M.M., Potter, K., Rheingans, P., & Schultz, T. (2014). Overview and state-of-the-art of uncertainty visualization. In Scientific Visualization, Springer, pp. 3–27
Borkin, M.A., Vo, A.A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H. (2013). What makes a visualization memorable? IEEE Transactions on Visualization and Computer Graphics, 19(12), 2306–2315.
Cairo, A. (2015). Chapter 5. Graphics Lies, Misleading Visuals Reflections on the Challenges and Pitfalls of Evidence-Driven Visual Communication. In D. Bihanic (Ed.), New Challenges for Data Design. Springer-Verlag, London.
Cayne, B. (1987). The New Lexicon Webster's Dictionary of the English Language. Lexicon Publications, New York, NY, 1149 pages.
Chien, T.W., Lin, Y.F., Chang, C.H., Tsai, M.T., & Uen, Y.H. (2012). Using a bubble chart to enhance adherence to quality-of-care guidelines for colorectal cancer patients. European Journal of Cancer Care, 21(6), 712–721.
Cleveland, W., McGill, R. (1984). Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association, 79(387), 531–554.
Cook, P. (2023). Introduction to D3.js. D3 in Depth. Retrieved from https://www.d3indepth.com/introduction/
Dougherty, J., & Ilyankou, I. (2024). Hands-On Data Visualization. Interactive Storytelling from Spreadsheets to Code. O’Reilly.
Dur, B. (2014). Data visualization and infographics in visual communication design education at the age of information. Journal of Arts and Humanities (JAH), 3(5).
Entango. (2023). Improving Data Visualization with Gestalt Principles. Medium. Retrieved from https://medium.com/@entango/improving-data-visualization-with-gestalt-principles-b316f474ea07
Flexner, S. (1987). The Random House Dictionary of the English Language (2nd Ed.). Unabridged. Random House, New York, NY.
Geidner, N., & Cameron, J. (2017). Readers perceive deceptive graphics as less credible. Newspaper Research Journal, 38(4), 473–83.
Gotz, D., & Borland, D. (2016). Data-Driven Healthcare: Challenges and Opportunities for Interactive Visualization. IEEE, pp. 90–96
Gour, R. (2019). Top 5 BI Tools widely used for Data Visualization. Towards Data Science Medium. Retrieved from https://towardsdatascience.com/top-5-bi-tools-that-you-must-use-for-data-visualization-7ccc2a852bd3
Gruppetta, S. (2024). The Python Coding Book: A relaxed and friendly programming textbook for beginners.
Kaelin, M. (2022). Best data visualization tools and software 2022. ITBlendHub. Retrieved from https://itblendhub.com/article/data-visualization-tools/
Keahey, T.A (2013). Using Visualization to understand big data. IBM, pp. 1–15.
Keim, D.A., Hao, M.C., Dayal, U., Janetzko, H., & Bak, P. (2010). Generalized Scatter Plots. Information Visualization, 9(4), 301–311.
Khaled, A. (2020). Data Visualization with ggplot2. Towards Data Science Medium. Retrieved from https://towardsdatascience.com/data-visualization-with-ggplot2-db04c4956236
Khan, M., & Khan, S. (2011). Data and Information Visualization Methods and Interactive Mechanisms: A Survey. International Journal of Computer Applications, (0975–8887), 34(1), 1–14.
Kim, D., Setlur, V., & Agrawala, M. (2021). Towards Understanding How Readers Integrate Charts and Captions: A Case Study with Line Charts. CHI '21: CHI Conference on Human Factors in Computing Systems.
Kosara, R. (2016). Presentation-Oriented Visualization Techniques. IEEE Computer Graphics and Applications, 36, 80–85.
Kuznetsova, A. (2023). Gestalt Principles in Data Visualization. Medium. Retrieved from https://nastengraph.medium.com/gestalt-principles-in-data-visualization-a4e56e6074b5
Liu, Y., Hu, M., Zhang, R., Xu, T., Wang, Y., & Zhou, Z. (2022). Visual aggregation of large multivariate networks with attribute-enhanced representation learning, Neurocomputing, 494, 320–335.
MacEachren, A.M., Roth, R.E., O’Brien, J., Li, B., Swingley, D., & Gahegan, M. (2012) Visual semiotics & uncertainty visualization: An empirical study. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2496–2505.
Masalonis, A., Mulgund, S., Song, L., Wanke, C., & Zobell, S. (2004). Using probabilistic demand predictions for traffic flow management decision support. In AIAA Guidance, Navigation, and Control Conference and Exhibit, p.5231.
Page, M., Mckenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., . . . Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372.
Pang, A.T., Wittenbrink, C.M., & Lodha, S.K. (1997). Approaches to uncertainty visualization. The Visual Computer, 13(8), 370–390.
Porras, G. (2023). Visualizing data with purpose: A guide to applying gestalt principles and color theory. Medium. Retrieved from https://medium.com/@giovannisolanoporras/visualizing-data-with-purpose-a-guide-to-applying-gestalt-principles-and-color-theory-ba9ccbe104c1
Power BI. (2023). Tips for evaluating Data Visualization tools. Microsoft Power BI. Retrieved from https://powerbi.microsoft.com/en-us/data-visualization-tools/
Rawat, A. (2021). 10 Applications of Data Visualization. Analytic Steps. Retrieved from https://www.analyticssteps.com/blogs/10-applications-data-visualization
R Graph Gallery. (2018). Ggplot 2. R Graph Gallery. Retrieved from https://r-graph-gallery.com/ggplot2-package.html
Sadiku, M., Shadare, A., Musa, S., & Akujuobi, C. (2016). Data Visualization. International Journal of Engineering Research and Advanced Technology, 2(12), 11–16.
SAS. (2023). Data Visualization Techniques. SAS. Retrieved from https://www.sas.com/content/dam/SAS/bp_de/doc/whitepaper1/ba-wp-data-visualization-techniques-2252344.pdf
Severino, R. (2023). The Data Visualization Catalogue. Retrieved from https://datavizcatalogue.com/methods
Spence, I. (2005). No Humble Pie: The Origins and Usage of a Statistical Chart. Journal of Educational and Behavioral Statistics, 30.
Stafford, A. (2019). The What, Why, and How of Sankey Diagrams. Towards Data Science Medium. Retrieved from https://towardsdatascience.com/the-what-why-and-how-of-sankey-diagrams-430cbd4980b5
Stobierski, T. (2023). Top data visualization tools for business professionals. HBS. Retrieved from https://online.hbs.edu/blog/post/data-visualization-tools
Tableau. (2023). What is Data Visualization? Definition, Examples, and Learning Resources. Retrieved from https://www.tableau.com/learn/articles/data-visualization
Teets, J., Tegarden, D., & Russell, R. (2010). Using Cognitive Fit Theory to Evaluate the Effectiveness of Information Visualizations: An Example Using Quality Assurance Data. IEEE Transactions on Visualization and Computer Graphics, 16, 841–853.
Tegarden, D.P. (1999). Business information visualization. Communications of the AIS, 1(4).
Telea, A. (2015). Data Visualization Principles and Practice (Second Edition). CRC Press.
Tufte, E. (1997). The Visual Display of Quantitative Information (2nd Edition). Graphics Pr.
Vessey, I. (1991). Cognitive Fit: A Theory-Based Analysis of the Graphs Versus Tables Literature. Decision Sciences, 22(2), 219–240
Viégas, F.B., & Wattenberg, M. (2007). Artistic data visualization: Beyond visual analytics. In Proceedings of the 2nd International Conference on Online Communities and Social Computing (pp. 182–191). Berlin, Heidelberg: Springer-Verlag.
Visual Paradigm. (2023). How to Create a Storyboard of Wireframes? Visual Paradigm User’s Guide. Retrieved from https://www.visual-paradigm.com/support/documents/vpuserguide/2822/3406/85137_creatingawir.html
Wickham, H. (2010). A Layered Grammar of Graphics. Journal of Computational and Graphical Statistics, 19(1), 3–28.
Wilkinson, L. (1999). The Grammar of Graphics. New York: Springer.
Yi, M. (2021). A Complete Guide to Violin Plots. ChartIO. Retrieved from https://chartio.com/learn/charts/violin-plot-complete-guide/